• Title/Summary/Keyword: Burner Diameter

Search Result 61, Processing Time 0.021 seconds

Effect of Outer Edge Flame on Flame Extinction in Counterflow Diffusion Flames (대향류 확산화염에서 에지화염이 화염소화에 미치는 영향)

  • Chung, Yong-Ho;Park, Dae-Geun;Park, Jeong;Yun, Jin-Han;Kwon, Oh-Boong;Keel, Sang-In
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.2
    • /
    • pp.181-188
    • /
    • 2012
  • The present study on nitrogen-diluted non-premixed counterflow flames with finite burner diameters experimentally investigates the important role of the outer edge flame in flame extinction. Flame stability diagrams mapping the flame extinction response of nitrogen-diluted non-premixed counterflow flames to varying global strain rates in terms of the burner diameter, burner gap, and velocity ratio are explored. There exists a critical nitrogen mole fraction beyond which the flame cannot be sustained, and also the curves of the critical nitrogen mole fraction versus the global strain rate have C-shapes in terms of burner diameter, burner gap, and velocity ratio. In flames with sufficiently high strain rates, the curves of the critical nitrogen mole fractions versus global strain rate collapse into one curve, and the flames can have the 1-D flame response of typical diffusion flames. Three flame extinction modes are identified: flame extinctions through the shrinkage of the outer edge flame with and without an oscillation of the outer edge flame prior to the extinction and flame extinction through a flame hole at the flame center. The measured flame surface temperature and a numerical evaluation of the fractional contribution of each term in the energy equation show that the radial conductive heat loss at the flame edge destabilizes the outer edge flame, and the conductive and convection heat addition to the outer edge from the trailing diffusion flame stabilizes the outer edge flame. The radial conductive heat loss at the flame edge is the dominant extinction mechanism acting through the shrinkage of the outer edge flame.

A Study on Transition of Flame Extinction at Low Strain Rate Counterflow Flames (저신장율 대향류화염에서 화염소화에 있어서 천이에 대한 연구)

  • Park, Dae-Geun;Park, Jeong;Kim, Jeong-Soo;Bae, Dae-Suk
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.197-201
    • /
    • 2009
  • Experiments were conducted to study the transition of shrinking flame disk to flame hole in counterflow diffusion flames. The studies of transition are well described by varying burner diameters, global strain rate and velocity ratio. It is experimentally verified that radial conduction heat loss is affected at even high strain rate flames for appropriately small burner diameters. It is also shown that flame extinction modes are grouped into three and particularly, hole or stripe is observed in sufficiently high strain rate flames. There exists critical radius according to burner diameter which divide flame extinction modes into three parts.

  • PDF

A Study on the Mixing Capacity of Lifted Flame by the Nozzle Hole-tone of High Frequency in Non-premixed Jet Flames (비예혼합 제트화염에서 고주파수의 노즐 구멍음에 의한 부상화염 혼합성능에 관한 연구)

  • Jo, Joon-Ik;Lee, Kee-Man
    • Journal of the Korean Society of Visualization
    • /
    • v.9 no.4
    • /
    • pp.35-40
    • /
    • 2011
  • An experimental investigation of the characteristic of non-premixed lifted flames with nozzle hole-tone of high-frequency has been performed. Before the fuel was supplied to nozzle, the fuel was supplied through a burner cavity which was located under the nozzle. The fuel passed through the excitation cavity under the influence of the high-frequency affects the lifted flame characteristics. The measurements were performed in flow range that occurs lifted flame and blow out. When the high-frequency is generated from burner cavity, the lifted length became shorter, and noise reduced comparing to unexcitation case. Additionally, operating flow range was increased and diameter of flame base became smaller with high-frequency effect. Through this experiments, it's ascertained that the high-frequency excitation can be adopted with effective method for flame stability and noise reduction.

Simulations of premixed combustion in porous media (다공판 내의 예혼합연소 특성 해석)

  • Shin, Youngjun;Lee, Jeongwon;Kim, Yongmo
    • 한국연소학회:학술대회논문집
    • /
    • 2012.04a
    • /
    • pp.253-255
    • /
    • 2012
  • This study has numerically investigated the combustion processes in the bilayer porous media. To account for the velocity transition and diffusion influenced by solid matrix, porosity effects are included in the governing equations. Heat transfer coefficient is calculated by Nusselt number to reflect the effect of gas velocity, pore diameter, and material properties. Numerical results indicate that the present approach is capable of the essential features of the premixed combustion in the porous burner, in terms of the precised flame structure, pollutant formation, and flame stabilization. It is also found that heat transferred from the downstream flame zone is conducted to the upstream flame region through the solid matrix and the preheated mixture. By increasing the inlet velocity, the solid temperature of upstream is cooling down.

  • PDF

Characterization of Finely Divided V2O5 Particles Synthesized by Flame method (불꽃 합성법에 의한 초미세 산화바나듐 입자의 제조 및 소결특성)

  • 이영섭;정종식
    • Journal of the Korean Ceramic Society
    • /
    • v.26 no.6
    • /
    • pp.836-842
    • /
    • 1989
  • In this study, finely divided vanadium pentoxide was prepared by carrying vapor of vanadyl trichloride into the flame of an C3H8-O2-H2 with a specially designed burner. The flame-synthesized oxide particles had a nonporous spherical shape with nearly constant diameter in the range of 200-600$\AA$. The surface area of these particles depends on the residence time and the concentration of metal chloride vapor in the burner. The experimental results showed that the growth of particles is controlled by fusion rather than collision. The crystal size of finely divided V2O5 particle was increased after calcination at temperature above 50$0^{\circ}C$.

  • PDF

Comparison of Spray Characteristics between Conventional and Electrostatic Pressure-Swirl Nozzles

  • Laryea, G.N.;No, S.Y.
    • Journal of ILASS-Korea
    • /
    • v.11 no.1
    • /
    • pp.24-29
    • /
    • 2006
  • Spray characteristics produced by conventional and electrostatic pressure-swirl nozzles for an oil burner have been studied, using kerosine as a test liquid. The charge injection mechanism is used to design the electrostatic nozzle, where specific charge density, breakup length, spray angle and mean diameter are measured and analyzed. Three nozzles with orifice diameters of 0.256, 0.308 and 0.333mm at injection pressures of 0.7, 0.9, 1.1 and 1.3 MPa are used in the study. In case of the electrostatic nozzle, voltages ranging from -5 to -12kV are applied. Comparison of the spray characteristics is made between the conventional and electrostatic nozzles. The results showed that, the electrostatic nozzle is superior to the conventional nozzle. This is due the effect of voltage on the liquid surface tension.

  • PDF

An Experimental Study on the Safely of Portable Butane Gas Range (휴대용 부탄 가스 레인지의 안전성에 관한 실험적 연구)

  • 이근오;이장우;김종현
    • Journal of the Korean Society of Safety
    • /
    • v.15 no.3
    • /
    • pp.23-29
    • /
    • 2000
  • The objective of this paper is to study burst through the influence of overheating to affect a seamed container using the cookers with different materials and bottom sizes. Following result are drawn from this study; When bottom size of the roast meat had 24cm diameter, the upper part temperature of a seamed container was increased over $40^{\circ}C$. Therefore the cooker material without regard to cooker size had a great influence on the temperature of seamed container. For the natural stone plate which had bottom length 65cm, a seamed container was burst at the cooker temperature $801^{\circ}C$, the surface temperature of a burner $573^{\circ}C$. the upside temperature of seamed container $379^{\circ}C$, the downside temperature of seamed container $236^{\circ}C$ and ambient temperature $34^{\circ}C$. For the cooker of the same bottom area, the stone plate had greater influence on effect of temperature than aluminium cooker. Overheating had a great influence on the seamed container if the bottom or upside diameter of a cooker had been larger than a trivet.

  • PDF

Multi-Dimensional Effects on a tow Strain Rate Flame Extinction Under Microgravity Environment (미소 중력장에 있는 저신장율 화염소화에 미치는 다차원 효과)

  • Oh Chang Bo;Kim Jeong Soo;Hamins Anthony;Park Jeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.9 s.240
    • /
    • pp.988-996
    • /
    • 2005
  • Flame structure and extinction mechanism of counterflow methane/air non-premixed flame diluted with nitrogen are studied by NASA 2.2 s drop tower experiments and two-dimensional numerical simulations with finite rate chemistry and transport properties. Extinction mechanism at low strain rate is examined through the comparison among results of microgravity experiment, 1D and 2D simulations with a finite burner diameter. A two-dimensional simulation in counterflow flame especially with a finite burner diameter is shown to be very important in explaining the importance of multidimensional effects and lateral heat loss in flame extinction, effects that cannot be understood using a one-dimensional flamelet model. Extinction mechanism at low strain rate is quite different from that at high strain rate. Low strain rate flame is extinguished initially at the outer flame edge, the flame shrinks inward, and finally is extinguished at the center. It is clarified from the overall fractional contribution by each term in energy equation to heat release rate that the contribution of radiation fraction with 1D and 2D simulations does not change so much and the overall fractional contribution is decisively attributed to radial conduction ('lateral heat loss'). The experiments by Maruta et at. can be only completely understood if multi-dimensional heat loss effects are considered. It is, as a result, verified that the turning point, which is caused only by pure radiation heat loss, has to be shifted towards much lower global strain rate in microgravity flame.

A Study of the Pollutant Formation and Spectral Radiation Properties in Ceramic Fiber Radiant Burner (세라믹 화이버 버너의 배기 배출물과 분광학적 특성에 관한 연구)

  • Jeong, Yong-Ki;Kim, Young-Soo;Lee, Dae-Rae;Yang, Dae-Bong;Ryu, Jung-Wan;Yun, Alexander;Ha, Man-Young;Chang, Young-June;Jeon, Chung-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.9
    • /
    • pp.790-798
    • /
    • 2007
  • An experimental study was performed to investigate the effects of mixing quality, inlet pressure, nozzle diameter on CO, NO emission and radiation characteristics in porous ceramic fiber radiant burners. Observations of combustion characteristics occurring inside the burner system which was insulated fiber mat, were investigated by measuring emission and radiation characteristics. Combustion was achieved at the firing rate of $88{\sim}99\;kcal/hr$, inlet pressure of $100{\sim}250mmH_2O$. The fiber burner exhibit significant both spectral intensity peaks in the bands at $2.5{\mu}m\;and\;4.0{\mu}m$ relatively. There is a small difference in the variable mixing tube. However spectral intensity increased with the firing rate. CO emissions were found to be strongly dependent on the operating conditions. There was a tendency that CO concentration increased as the firing rate increases. the reason for rise of CO concentration is that is becomes it the relatively rich condition. Relatively low NO emission was observed for the whole operating range. The NO concentration is maximal at the firing rate of approximately 2850 kcal/hr and an air ratio of about 1.

Development of Coke Breeze Combustion Technology in the Calcining Rotary Kiln (Rotary Kiln 식석회소성로에서의 분코크스 연소 기술)

  • Kim, J.G.;Cho, H.C.;Kim, Y.W.
    • 한국연소학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.41-45
    • /
    • 2004
  • A dust injection system was developed for the lime calcining rotary kiln for the coke dust from the coke dry quenching(CDQ) facility to be used as a fuel. The CDQ dust was injected with the gaseous fuel through the hole in the burner. In order to prevent the spot heating large particles should be removed from dust and dust should be injected as fast as possible so that particle combustion lasts as long as possible without precipitation. This is especially necessary when dust is burned together with gaseous fuel because the gaseous fuel can not go so far and in addition dust combustion aggravates hot spot heating. In this research a rotation drum screen was used to remove particles with diameter larger than 4mm and dust injection speed was 40m/sec. And the burner was adjusted not to use swirl that hinders flame go far away. With these measures scale generation iside the kiln could be reduced to be negligible and in addition NOx emission could be reduced from 150ppm to 20ppm. The fuel reduction was about 85Mcal/T-lime.

  • PDF