• Title/Summary/Keyword: Burned Area Mapping

Search Result 9, Processing Time 0.024 seconds

Evaluation of the Normalized Burn Ratio (NBR) for Mapping Burn Severity Base on IKONOS-Images (IKONOS 화상 기반의 산불피해등급도 작성을 위한 정규산불피해비율(NBR) 평가)

  • Kim, Choen
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.2
    • /
    • pp.195-203
    • /
    • 2008
  • Burn severity is an important role for rehabilitation of burned forest area. This factor led to the pilot study to determine if high resolution IKONOS images could be used to classify and delinenate the bum severity over burned areas of Samchock Fire and Cheongyang-Yesan Fire. The results of this study can be summarized as follows: 1. The modified Normalized Bum Ratio (NBR) for IKONOS imagery can be evaluated using burn severity mapping. 2. IKONOS-derived NBR imagery could provide fire scar and detail mapping of burned areas at Samchock fire and Cheongyang-Yesan Burns.

Mapping of Post-Wildfire Burned Area Using KOMPSAT-3A and Sentinel-2 Imagery: The Case of Sokcho Wildfire, Korea

  • Nur, Arip Syaripudin;Park, Sungjae;Lee, Kwang-Jae;Moon, Jiyoon;Lee, Chang-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.6_2
    • /
    • pp.1551-1565
    • /
    • 2020
  • On April 4, 2019, a forest fire started in Goseong County and lasted for three days, burning the neighboring areas of Sokcho. The strong winds moved the blaze from one region to another region and declared the worst wildfire in South Korea in years. More than 1,880 facilities, including 400 homes, were burnt down. The fire burned a total area of 529 hectares (1,307 acres), which involved 13,000 rescuers and 16,500 military troops to control the fire occurrence. Thousands of people were evacuated, and two people are dead. This study generated post-wildfire maps to provide necessary data for evacuation and mitigation planning to respond to this destructive wildfire, also prevent further damage and restore the area affected by the wildfire. This study used KOMPSAT-3A and Sentinel-2 imagery to map the post-wildfire condition. The SVM showed higher accuracy (overall accuracy 95.29%) compared with ANN (overall accuracy of 94.61%) for the KOMPSAT-3A. Moreover, for Sentinel-2, the SVM attained a higher accuracy (overall accuracy of 91.52%) than the ANN algorithm (overall accuracy 90.11%). In total, four post-wildfire burned area maps were generated; these results can be used to assess the area affected by the Sokcho wildfire and wildfire mitigation planning in the future.

A Study on Winter-Covered Optical Satellite Imagery for Post-Eire Forest Monitoring

  • Kim, Choen;Park, Seung-Hwan
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.274-274
    • /
    • 2002
  • Damage to forest trees, caused by wildfire, changes their spectral reflectance signature. This factor led to the initiation of a research project at the Remote Sensing & GIS Laboratory, Kookmin University, to determine if multispectral data acquired by IKONOS could provide fire scar and bum severity mapping. This paper will present detail mapping of burned areas in the eastern coast of Korea with IKONOS imagery. In addition, a single post-burn Landsat-7 ETM+ data was used to compare with IKONOS, the study area. Burn severity map based on IKONOS image was found to be affected by strong topographic illumination effects in the mountain forest. But it has better the delineation of the bum-scarred area. In this study the NDVI was analyzed for geometric illumination conditions influenced by topography(slop, aspect and elevation) and shadow(solar elevation and azimuth angle).

  • PDF

Fire-Induced Forest Disturbance Mapping by Using QuickBird Imagery (QuickBird 화상을 이용한 산불 삼림교란도 작성)

  • Kim, Choen
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.1
    • /
    • pp.85-94
    • /
    • 2009
  • This paper presents the capability to use QuickBird imagery for effects of forest disturbance in Okgye burned area. Particular attention of this paper deals with the NBR-derived mapping burn severity on QuickBird imagery to locate reliable rehabilitation(namely, secondary succession) over postfire surface. Comparisons of the mapping forest disturbance derived from QuickBird NBR data and the mapping burn severity derived from Landsat ${\Delta}NBR$ data show substantial agreement (KHAT value =0.7886). The method calculated from the correlation between QuickBird wetness and Landsat ETM+ band7 may have application to forest harvest disturbance.

Classification of Vegetation Units and Its Detailed Mapping for Urban Forest Management - On Mt. Moodeung in Kwangju, Korea - (도시림(都市林) 관리(管理)를 위(爲)한 식생단위구분(植生單位區分)과 정밀식생도(情密植生圖) 작성(作成) - 광주광역시(光州廣域市) 무등산(無等山)을 중심(中心)으로 -)

  • Cho, Hyun-Je;Cho, Jae-Hyong;Lee, Chang-Seok
    • Journal of Korean Society of Forest Science
    • /
    • v.89 no.4
    • /
    • pp.470-479
    • /
    • 2000
  • Management units of forest vegetation established on Mt. Moodeung (1,186.8m), a typical urban forest at Kwangju city located in the southwestern Korea, was classified phytosociologically and its spatial distribution mapped out with special reference to its ecological conservation and management. Management units of this area were classified into three categories; twenty-one higher units, ten lower units and nine lowest units, giving a total of 31 zones. Total area for detailed mapping was 2,779.5ha, of which natural vegetation accounted for 2192.0ha (78.9%), residing in most part of this area, artificial vegetation for 159.1ha (5.7%), and non-forested area including arable area, burned area and others for 428.4ha (15.5%). The ratio of natural forest element showed 93.2%, which is much higher when compared with those of other urban forests.

  • PDF

Analysis on Topographic Normalization Methods for 2019 Gangneung-East Sea Wildfire Area Using PlanetScope Imagery (2019 강릉-동해 산불 피해 지역에 대한 PlanetScope 영상을 이용한 지형 정규화 기법 분석)

  • Chung, Minkyung;Kim, Yongil
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.2_1
    • /
    • pp.179-197
    • /
    • 2020
  • Topographic normalization reduces the terrain effects on reflectance by adjusting the brightness values of the image pixels to be equal if the pixels cover the same land-cover. Topographic effects are induced by the imaging conditions and tend to be large in high mountainousregions. Therefore, image analysis on mountainous terrain such as estimation of wildfire damage assessment requires appropriate topographic normalization techniques to yield accurate image processing results. However, most of the previous studies focused on the evaluation of topographic normalization on satellite images with moderate-low spatial resolution. Thus, the alleviation of topographic effects on multi-temporal high-resolution images was not dealt enough. In this study, the evaluation of terrain normalization was performed for each band to select the optimal technical combinations for rapid and accurate wildfire damage assessment using PlanetScope images. PlanetScope has considerable potential in the disaster management field as it satisfies the rapid image acquisition by providing the 3 m resolution daily image with global coverage. For comparison of topographic normalization techniques, seven widely used methods were employed on both pre-fire and post-fire images. The analysis on bi-temporal images suggests the optimal combination of techniques which can be applied on images with different land-cover composition. Then, the vegetation index was calculated from the images after the topographic normalization with the proposed method. The wildfire damage detection results were obtained by thresholding the index and showed improvementsin detection accuracy for both object-based and pixel-based image analysis. In addition, the burn severity map was constructed to verify the effects oftopographic correction on a continuous distribution of brightness values.

An Quantitative Analysis of Severity Classification and Burn Severity for the Large Forest Fire Areas using Normalized Burn Ratio of Landsat Imagery (Landsat 영상으로부터 정규탄화지수 추출과 산불피해지역 및 피해강도의 정량적 분석)

  • Won, Myoung-Soo;Koo, Kyo-Sang;Lee, Myung-Bo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.10 no.3
    • /
    • pp.80-92
    • /
    • 2007
  • Forest fire is the dominant large-scale disturbance mechanism in the Korean temperate forest, and it strongly influences forest structure and function. Moreover burn severity incorporates both short- and long-term post-fire effects on the local and regional environment. Burn severity is defined by the degree to which an ecosystem has changed owing to the fire. Vegetation rehabilitation may specifically vary according to burn severity after fire. To understand burn severity and process of vegetation rehabilitation at the damaged area after large-fire is required a lot of man powers and budgets. However the analysis of burn severity in the forest area using satellite imagery can acquire rapidly information and more objective results remotely in the large-fire area. Space and airbone sensors have been used to map area burned, assess characteristics of active fires, and characterize post-fire ecological effects. For classifying fire damaged area and analyzing burn severity of Samcheok fire area occurred in 2000, Cheongyang fire in 2002, and Yangyang fire in 2005 we utilized Normalized Burn Ratio(NBR) technique. The NBR is temporally differenced between pre- and post-fire datasets to determine the extent and degree of change detected from burning. In this paper we use pre- and post-fire imagery from the Landsat TM and ETM+ imagery to compute the NBR and evaluate large-scale patterns of burn severity at 30m spatial resolution. 65% in the Samcheok fire area, 91% in the Cheongyang fire area and 65% in the Yangyang fire area were corresponded to burn severity class above 'High'. Therefore the use of a remotely sensed Differenced Normalized Burn Ratio(${\Delta}NBR$) by RS and GIS allows for the burn severity to be quantified spatially by mapping damaged domain and burn severity across large-fire area.

  • PDF

Mapping Burned Forests Using a k-Nearest Neighbors Classifier in Complex Land Cover (k-Nearest Neighbors 분류기를 이용한 복합 지표 산불피해 영역 탐지)

  • Lee, Hanna ;Yun, Konghyun;Kim, Gihong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.6
    • /
    • pp.883-896
    • /
    • 2023
  • As human activities in Korea are spread throughout the mountains, forest fires often affect residential areas, infrastructure, and other facilities. Hence, it is necessary to detect fire-damaged areas quickly to enable support and recovery. Remote sensing is the most efficient tool for this purpose. Fire damage detection experiments were conducted on the east coast of Korea. Because this area comprises a mixture of forest and artificial land cover, data with low resolution are not suitable. We used Sentinel-2 multispectral instrument (MSI) data, which provide adequate temporal and spatial resolution, and the k-nearest neighbor (kNN) algorithm in this study. Six bands of Sentinel-2 MSI and two indices of normalized difference vegetation index (NDVI) and normalized burn ratio (NBR) were used as features for kNN classification. The kNN classifier was trained using 2,000 randomly selected samples in the fire-damaged and undamaged areas. Outliers were removed and a forest type map was used to improve classification performance. Numerous experiments for various neighbors for kNN and feature combinations have been conducted using bi-temporal and uni-temporal approaches. The bi-temporal classification performed better than the uni-temporal classification. However, the uni-temporal classification was able to detect severely damaged areas.

Wildfire Severity Mapping Using Sentinel Satellite Data Based on Machine Learning Approaches (Sentinel 위성영상과 기계학습을 이용한 국내산불 피해강도 탐지)

  • Sim, Seongmun;Kim, Woohyeok;Lee, Jaese;Kang, Yoojin;Im, Jungho;Kwon, Chunguen;Kim, Sungyong
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_3
    • /
    • pp.1109-1123
    • /
    • 2020
  • In South Korea with forest as a major land cover class (over 60% of the country), many wildfires occur every year. Wildfires weaken the shear strength of the soil, forming a layer of soil that is vulnerable to landslides. It is important to identify the severity of a wildfire as well as the burned area to sustainably manage the forest. Although satellite remote sensing has been widely used to map wildfire severity, it is often difficult to determine the severity using only the temporal change of satellite-derived indices such as Normalized Difference Vegetation Index (NDVI) and Normalized Burn Ratio (NBR). In this study, we proposed an approach for determining wildfire severity based on machine learning through the synergistic use of Sentinel-1A Synthetic Aperture Radar-C data and Sentinel-2A Multi Spectral Instrument data. Three wildfire cases-Samcheok in May 2017, Gangreung·Donghae in April 2019, and Gosung·Sokcho in April 2019-were used for developing wildfire severity mapping models with three machine learning algorithms (i.e., Random Forest, Logistic Regression, and Support Vector Machine). The results showed that the random forest model yielded the best performance, resulting in an overall accuracy of 82.3%. The cross-site validation to examine the spatiotemporal transferability of the machine learning models showed that the models were highly sensitive to temporal differences between the training and validation sites, especially in the early growing season. This implies that a more robust model with high spatiotemporal transferability can be developed when more wildfire cases with different seasons and areas are added in the future.