• Title/Summary/Keyword: Burn-in Test

Search Result 200, Processing Time 0.033 seconds

Development and evaluation of new drilling and blasting method for excavaton of rock mass with one free surface (일자유면 암반 굴착을 위한 신바파공법의 개발 및 평가)

  • 임재웅;윤영재;서정복
    • Tunnel and Underground Space
    • /
    • v.4 no.3
    • /
    • pp.237-249
    • /
    • 1994
  • A new type of cut method, called SK-cut, was developed in order to overcome the shortcomings of the conventional V-cut and Burn-cut blasting methods. Total 190 times of test blasts were performed for the evaluation of the efficiency of new blasting method. V-cut, Burn cut and SK-cut were compared by applying them to the excavation of main gallery and construction tunnel of underground oil storage cavern. Test results showed that excavation efficiency of the new method was increased by 5.9~9.8% and that specific charge was reduced to 71~92%.

  • PDF

Development of Coolant Flow Simulation System for Nuclear Fuel Test Rigs (핵연료조사리그 냉각수 유동 모의장치 개발)

  • Hong, Jintae;Joung, Chang-Young;Heo, Sung-Ho;Kim, Ka-Hye
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.1
    • /
    • pp.117-123
    • /
    • 2015
  • To remove heat generated during a burn-up test of nuclear fuels, the heat generation rate of nuclear fuels should be calculated accurately, and a coolant should be circulated in the test loop at an adequate flow rate. HANARO is an open pool-type reactor with an independent test loop for the burn-up test of nuclear fuels. A test rig is installed in the test loop, and a coolant is circulated through the test loop to maintain the temperature of the nuclear fuel rods within a desired temperature during an irradiation test. The components and sensors in the test rig can be broken or malfunction owing to the flow-induced vibration. In this study, a coolant flow simulation system was developed to verify and confirm the soundness of components and sensors assembled in the test rig with a high flow rate of the coolant.

Impacts of Burnup-Dependent Swelling of Metallic Fuel on the Performance of a Compact Breed-and-Burn Fast Reactor

  • Hartanto, Donny;Heo, Woong;Kim, Chihyung;Kim, Yonghee
    • Nuclear Engineering and Technology
    • /
    • v.48 no.2
    • /
    • pp.330-338
    • /
    • 2016
  • The U-Zr or U-TRU-Zr cylindrical metallic fuel slug used in fast reactors is known to swell significantly and to grow during irradiation. In neutronics simulations of metallic-fueled fast reactors, it is assumed that the slug has swollen and contacted cladding, and the bonding sodium has been removed from the fuel region. In this research, a realistic burnup-dependent fuel-swelling simulation was performed using Monte Carlo code McCARD for a single-batch compact sodium-cooled breed-and-burn reactor by considering the fuel-swelling behavior reported from the irradiation test results in EBR-II. The impacts of the realistic burnup-dependent fuel swelling are identified in terms of the reactor neutronics performance, such as core lifetime, conversion ratio, axial power distribution, and local burnup distributions. It was found that axial fuel growth significantly deteriorated the neutron economy of a breed-and-burn reactor and consequently impaired its neutronics performance. The bonding sodium also impaired neutron economy, because it stayed longer in the blanket region until the fuel slug reached 2% burnup.

A Study on Cyclic Variation by Idling in Gasoline Vehicle (가솔린자동차의 무부하 운전에서 사이클변동에 관한 연구)

  • Han, Sung-Bin;Kim, Sung-Mo
    • Journal of Energy Engineering
    • /
    • v.18 no.3
    • /
    • pp.156-162
    • /
    • 2009
  • Cylinder-pressure based combustion analysis provides a mechanism through which a combustion researcher can understand the combustion process. This paper was to identify the most significant sources of cycle-to-cycle combustion variability in a spark ignition engine at idle. To analyse the cyclic variation in the test engine, the burn parameters are determined on a cycle-to-cycle basis through analysis of the engine pressure data. The burn rate analysis program was used in the analysis of the data. Burn parameters were used to determine the variations in the input parameter-i.e., fuel, air, residual mass, and so on.

Decontamination Performance Assessment for the Plasma Arc Vitrification pilot plant on the basis of Trial Burn Results(I) - Decontamination Characteristics for Hazardous Metal, Radioactive surrogate and Radioactive Tracer in Off-gas (시험연소결과에 근거한 플라즈바 아크방식 유리화 시험 설비의 제염성능 평가(I) - 배기가스중의 유해중금속, 방사성핵종 모의물질 및 방사성핵종 제염특성 -)

  • Chae, Gyung-Sun;Park, Youn-Hwan;Min, Byong-Yun;Chang, Jae-Ock;Park, Jun-Yong;Jeong, Weon-Ik;Moon, Byung-Sik
    • Journal of Radiation Protection and Research
    • /
    • v.25 no.2
    • /
    • pp.99-107
    • /
    • 2000
  • Through the results of off-gas analysis at 3 sampling points in Plasma Arc Melting vitrification pilot plant, it was evaluated the partitioning of spiked materials in off-gas and the decontamination characteristic of off-gas treatment system. Spiked materials are hazard_us heavy metals(Pb, Cd, Hg), radioactive surrogate(Co, Cs) and radioactive materials($^{60}Co,\;^{137}Cs$). Through the Trial burn tests, Decontamination factor of spiked materials in off-gas treatment system is calculated.

  • PDF

A Experimental Study on the Electronic Control Hysteresis Phenomenon of Lean Burn in Spark Ignition Engine (스파크 점화 엔진에서 희박연소의 전자제어 히스테리시스 현상에 관한 실험적 연구)

  • 김응채;김판호;서병준;김치원;이치우
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.3
    • /
    • pp.475-481
    • /
    • 2004
  • Recently it is strongly required on lower fuel consumption. lower exhaust emission, higher engine performance. and social demands in a spark ignition gasoline engine. In this study. the experimental engine used at test. it has been modified the lean burn gasoline engine. and used the programmable engine management system, and connected the controller circuit which is designed for the engine control. At the parametric study of the engine experiment, it has been controlled with fuel injection, ignition timing. swirl mode, equivalence ratio engine dynamometer load and speed as the important factors governing the engine performance adaptively. It has been found the combustion characteristics to overcome the hysteresis phenomena between normal and lean air-fuel mixing ranges. by mean of the look-up table set up the mapping values. at the optimum conditions during the engine operation. As the result, it is found that the strength of the swirl flow with the variation of engine speed and load is effective on combustion characteristics to reduce the bandwidth of the hysteresis regions. The results show that mass fraction burned and heat release rate pattern with crank angle are reduced much rather, and brake specific fuel consumption is also reduced simultaneously.

1D AND 3D ANALYSES OF THE ZY2 SCIP BWR RAMP TESTS WITH THE FUEL CODES METEOR AND ALCYONE

  • Sercombe, J.;Agard, M.;Struzik, C.;Michel, B.;Thouvenin, G.;Poussard, C.;Kallstrom, K.R.
    • Nuclear Engineering and Technology
    • /
    • v.41 no.2
    • /
    • pp.187-198
    • /
    • 2009
  • In this paper, three power ramp tests performed on high burn-up Re-crystallized Zircaloy2 - UO2 BWR fuel rods (56 to 63 MWd/kgU) within the SCIP project are simulated with METEOR and ALCYONE 3D. Two of the ramp tests are of staircase type up to Linear Heat Rates of 420 and 520 W/cm and with long holding periods. Failure of the 420 W/cm fuel rod was observed after 40 minutes. The third ramp test consisted of a more standard ramp test with a constant power rate of 80 W/cm/min up to 410 W/cm with a short holding time. The tests were first simulated with the METEOR 1D fuel rod code, which gave accurate results in terms of profilometry and fission gas releases. The behaviour of a fuel pellet fragment and of the cladding piece on top of it was then investigated with ALCYONE 3D. The size and the main characteristics of the ridges after base irradiation and power ramp testing were recovered. Finally, the failure criteria validated for PWR conditions and fuel rods with low-to-medium burn-ups were used to analyze the failure probability of the KKL rodlets during ramp testing.

Analysis of clothing pressure for commercially customized burn patient's medical compression garments for men in their 20s (시판 맞춤형 화상환자 압박복의 의복압 분석 -20대 남성 상의를 대상으로-)

  • Cho, Shin-Hyun
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.21 no.4
    • /
    • pp.55-67
    • /
    • 2019
  • This study analyzed the fabric and product size of the burn patient's custom compression garment and measured the pressure applied by the garment to assess whether proper pressure is being delivered for treatment. The test clothes were presented to the market by body size and commissioned with the same design. The subjects selected four people close to the average body size of men in their 20s determined by 7th Size Korea. The experiment was conducted by wearing a compression suit, performing activities and measuring changes in the pressure of the garment according to changes in posture. The fabric used for the compressive clothing was not ruptured even at 216 kPa, the elasticity recovery rate was measured between 80.5 and 94.5%. The product dimensions of the experimental clothing varied by up to 8cm from brand to brand, requiring the standardization of compression clothing. The experiment showed that four types of compression suit varied in pressure, and the pressure range, excluding the gastric arm (17.9mmHg), was between 2.5-14.1mmHg, which failed to meet the level of pressurization for treatment purposes. The clothing pressure in the chest area dropped when performing movements rather than standing still. This was interpreted to be a result of reduced the adhesion of the compression suit during operation. The peak pressure (31.68mmHg) and the lowest pressure (2.2mmHg) was noted in the scapula, indicating that no pressure was being transmitted on the vertebrae. The pressure of the garment on the right shoulder blade was elevated in a supine position. Because much time is spent laying down, it is necessary for the pattern design to accommodate for the increased clothing pressure on the shoulder blades. Standardization of the level of pressurization for burn patient's custom-made pressure suits for each stage of treatment is urgently required.

Retrospective Analysis of the One-per-Million Tumescent Technique in Post-Burn Hand Deformity Surgeries

  • Prasetyono, Theddeus O.H.;Koswara, Astrid Felicia
    • Archives of Plastic Surgery
    • /
    • v.42 no.2
    • /
    • pp.164-172
    • /
    • 2015
  • Background The use of a tourniquet in hand surgery is generally accepted as necessary to create a clear visualization of the operative field. This study aims to determine the effectiveness of one-per-million tumescent solution (1:1,000,000 epinephrine concentration) in creating a bloodless operative field in post-burn hand deformity surgeries performed without a tourniquet. Methods This retrospective observational study was conducted on a series of 12 patients with post-burn hand deformities who underwent surgery between February 2013 and January 2014. A total of 29 operative fields were recorded. The one-per-million tumescent solution was used for hemostatis instead of a tourniquet. The clarity of the operative field, volume of solution injected, duration of surgery, scar thickness and density, and functional outcomes at least three months after the surgery were observed. The relationship of scar thickness and density with the clarity of the operative field was analyzed with the chi-square test. Results Of the 29 operative fields in which the one-per-million tumescent technique was used, 48.2% were totally bloodless, 44.8% had minimal bleeding, and 6.9% had an acceptable level of bleeding. Both scar thickness and density were shown to have a significant relationship with operative field clarity (P<0.05). Conclusions The one-per-million tumescent technique is effective in facilitating post-burn hand deformity surgeries involving meticulous, multiple, and lengthy procedures by creating a relatively clear operative field without the use of a tourniquet. Although scar thickness and density are associated with the clarity of the operative field, this technique can be considered safe and effective in creating a clear operative field.

A Development of Test Equipment for Thermal Protection Performance on Insulator used in Rocket Motor Chamber (연소관 내열고무의 내열성능평가를 위한 시험장치 개발)

  • Kang, YoonGoo;Park, JongHo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.3
    • /
    • pp.32-36
    • /
    • 2016
  • Test equipment was designed and manufactured to evaluate thermal reaction characteristic of internal insulators of solid rocket motor. Test is allowed up to chamber pressure 2,500 psi, burn-time 100 s. A cross section of test sample part is quadrature, and various test samples can be comparable at the same time. Inner temperature of test sample can be measured by thermocouples during burning. Test was executed in condition of efficient average chamber pressure 1,000 psi, efficient burn-time 10 s and safety of equipment was confirmed. Basic data for understanding thermal characteristics of internal insulator, that is, pressure-time curve, temperature-time curve in the test sample, and thermal destruction thickness of test sample was gained successfully.