• Title/Summary/Keyword: Burn 심빼기

Search Result 3, Processing Time 0.015 seconds

A Case Study on the Prediction of Fragmentation of Blasted Rock in Tunnel Blasting (터널발파에서 파쇄암의 입도예측에 관한 사례연구)

  • Ahn, Myung-Seog;Ryu, Chang-Ha;Kim, Su-Seog
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.3 no.1
    • /
    • pp.3-9
    • /
    • 2001
  • The investigation of the fragmentation of blasted rocks is particularly important because it is a measure of the blast efficiency. The degree of fragmentation has a major effect on the efficiency of the loading and crushing operations. Getting such an information on the large pile of blasted rock is not an easy operation. This paper presents the results of case study to evaluate the performance of two types of tunnel blasting: V-cut and burn cut. The digital images of muckpiles were analyzed to produce size distribution and it was compared with those of predictive equations.

  • PDF

A Case Study on the Prediction of Fragmentation of Blasted Rock in Tunnel Blasting (터널발파에서 파쇄암의 입도예측에 관한 연구)

  • 안명석;류창하;김수석
    • Explosives and Blasting
    • /
    • v.19 no.1
    • /
    • pp.111-116
    • /
    • 2001
  • 발파한 후 파쇄된 암석의 파쇄도는 발파효율을 나타내는 척도의 하나로서 발파방법을 평가하는 주요 인자이다. 파쇄도는 적재작업과 재활용을 위한 분쇄작업에 큰 영향을 미친다. 그러나 현장규모로 쌓여 있는 발파암 더미로부터 파쇄도를 조사한다는 것은 용이한 작업이 아니다. 본 논문에서는 현장 사례연구로서 터널발파에서 가장 중요한 요소인 심빼기 방법 중 경사공을 이용한 V형 심빼기와 수평공 무장약공을 이용한 Bum 심빼기 발파방법중 파쇄도 측면에서 더 효율적인 방법을 선택하기 위하여 발파후 파쇄된 암을 사진 촬영하여 이미지 분석을 실시하고 몇 가지 파쇄입도 예측식을 이용한 분석 결과와 비교하였다.

  • PDF

Characteristics of Near-field Ground Vibration in Tunnel Blasting using Electronic Detonators (전자뇌관을 이용한 터널발파의 근거리 지반진동 특성)

  • Kim, Yong-Pyo;Kim, Gab-Soo;Son, Young-Bok;Kim, Jae-Hoon;Kim, Hee-Do;Lee, Jun-Won
    • Explosives and Blasting
    • /
    • v.31 no.1
    • /
    • pp.76-86
    • /
    • 2013
  • In order to control tunnel blast vibration for adjacent facilities using electronic detonator, Understanding about the characteristics of near-field ground vibration is necessary. The purpose of this paper is to analyze effects of Cut-area and Extension-area vibration in relation to decision of tunnel blast vibration. These data were obtained at the top monitoring positions while ${\bigcirc}{\bigcirc}{\bigcirc}$ tunnel site of "Wonju~Gangneung double railroad section ${\bigcirc}{\bigcirc}$ construction" was passing under the existing road. Thus, tunnel blasting was conducted by tunnel electronic blasting system with 0.01% high delay-time accuracy. It can be possible that not only keeping maximum charge per delay-time but also preventing amplification of vibration which is occurred by delay-time scatter using common detonators. Additionally, V-Cut was changed into Burn-Cut. The results was presented that vibration level of extension-holes were higher than Cut-holes. Therefore, near-field ground vibration can be effectively minimized using electronic detonators in the Cut area. And also more effective way to reduce tunnel blast vibration is full-face blast using electronic detonators.