• Title/Summary/Keyword: Buried condition

Search Result 166, Processing Time 0.023 seconds

Effect of Boundary Conditions on Failure Probability of Buried Steel Pile (매설된 강 파일의 경계조건이 파손확률에 미치는 영향)

  • 이억섭;편장식;김의상
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.4
    • /
    • pp.204-213
    • /
    • 2003
  • A survey for finding corrosion examples was performed on the underground steel piles buried for 19 years in the area of iron and steel making factory near Young-il bay. A failure probability model, which can be used to check the reliability of the corrosive mechanical element, based on Von-Mises failure criterion and the standard normal probability function is proposed. The effects of varying boundary conditions such as temperature change, soil-friction, internal pressure, earthquake, loading of soil, traffic loads and corrosion on failure probability of the buried steel piles are systematically investigated. To allow for the uncertainties of the design variables, a reliability analysis technique has been adopted; this also allows calculation of the relative contribution of the random variables and the sensitivity of the failure probability.

A Study of the Vibration Safety Criterion on the Dynamic Behavior of Buried Pipeline with the Free Ends (양단자유 경계조건을 가진 매설관의 동적거동에서 진동안전 기준에 관한 연구)

  • 이병길;정진호;장봉현;안명석
    • Explosives and Blasting
    • /
    • v.22 no.3
    • /
    • pp.13-26
    • /
    • 2004
  • This work reports results of our study on the dynamic response of buried pipelines depending on their boundary conditions. We have studied behavior of the buried pipelines both along the axial and the transverse direction with a boundary condition of free ends. The buried pipelines are modeled as beams on elastic foundation while the seismic wave as a ground displacement in the form of a sinusoidal wave. The natural frequency, its mode, and the effect of parameters have been interpreted in terms of the free vibration. In order to investigate the response on the earthquake, the resulting frequency and the mode shape obtained from the free vibration have been utilized to derive the mathematical formula for the farced vibration. We have also completed the computer program to simulate the time-displacement graphs of the pipe lines with free ends for both cases of vibrations.

Effects of Freezing a Backfill Material under Undrained Condition on a Buried Pipe (포화 사질토 뒷채움재의 비배수 동결에 의한 매설 강관의 거동 - 실대형 모형실험 연구 -)

  • Kang, Jae-Mo;Lee, Jang-Guen;Kim, Hak-Seung;Lee, Sang-Yoon;Ryu, Byung-Hyun;Cho, Nam-Jun
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.8
    • /
    • pp.39-47
    • /
    • 2014
  • Frost heaving and thawing settlement cause unexpected stress around buried pipelines, which results in deformation and permanent demage. A large scale laboratory test has been performed to observe deformation, stress, and temperature of a buried pipe during atmospheric temperature changes. From the experimental results, the stress concentrated around the buried pipe is inevitable and deformation is caused by the frost heaving. Even though backfill materials are sandy soils which are normally assumed to be non frost susceptible, it is revealed that frost demage can happen due to drainage condition, the level of ground water table, and water content.

Soil-Reinforcement Interaction to Restrain Differential Settlement of Buried Pipeline (지반-보강재 상호작용에 의한 매설관의 부등침하 억제효과)

  • 손준익;정하익
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1991.04a
    • /
    • pp.29-33
    • /
    • 1991
  • This paper reports the application study of the ground reinforement under a buried pipeline subjected to differential settlement via a finite element modelling. The Soil-reinforrement interaction helps to mimimize the differential settlement between the adjoining pipe segments. The settlement pattern and deformation slope of a pipeline have been evaluated for a boundary condition at the joint between a rigid structure and apipeline. The analysis results are compared for both non-reinforied and reinforced cases to measure the effectiveness of the soil reinforcement for restraining the settlement of the pipeline.

  • PDF

Vibration Velocity Response of Buried Gas Pipelines according to Train Speed (지중 매설 가스 배관의 열차 주행 속도에 따른 진동 속도 특성)

  • Kim, Mi-Seung;Sun, Jin-Sun;Kim, Gun;Kim, Moon-Kyum
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.561-566
    • /
    • 2008
  • Recently, because of development of the high speed train technology, the vibration loads by train is significantly increased ever than before. This buried gas pipelines are exposed to both repeated impact loads, and, moreover, they have been influencing by vibration loads than pipeline which is not located under vehicle loads. The vibration characteristic of pipeline is examined by dynamic analysis, and variable is only train speed. Since an effect of magnitude of vibration loads is more critical than cover depth, as increasing the train speed, the vibration speed of buried pipelines is also increased. The slope of vibration velocity is changed by attenuation of wave, at train speed, 300 km/h. From the analysis results, the vibration velocity of pipelines is satisfied with the vibration velocity criteria which are established by Korea Gas Corporation. The results present operation condition of pipelines under rail loads has fully sound integrity based on KOGAS specification.

  • PDF

Study on deformation law of surrounding rock of super long and deep buried sandstone tunnel

  • Ding, Lujun;Liu, Yuhong
    • Geomechanics and Engineering
    • /
    • v.16 no.1
    • /
    • pp.97-104
    • /
    • 2018
  • The finite difference software Flac3D is used to study the influence of tunnel burial depth, tunnel diameter and lateral pressure coefficient of original rock stress on the stress and deformation of tunnel surrounding rock under sandstone condition. The results show that the maximum shear stress, the radius of the plastic zone and the maximum displacement in the surrounding rock increase with the increase of the diameter of the tunnel. When the lateral pressure coefficient is 1, it is most favorable for surrounding rock and lining structure, with the increase or decrease of lateral pressure coefficient, the maximum principal stress, surrounding displacement and plastic zone range of surrounding rock and lining show a sharp increase trend, the plastic zone on the lining increases with the increase of buried depth.

Effect of Boundary Conditions on Failure Probability of Buried Pipeline (매설배관의 경계조건이 파손확률에 미치는 영향)

  • Lee, Ouk-Sub;Pyun, Jang-Sik
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.311-316
    • /
    • 2001
  • A failure probability model based on Von-Mises failure criterion and the standard normal probability function is proposed. The effects of varying boundary conditions such as internal fluid pressure, external soil, traffic loads, temperature change and corrosion on failure probability of the buried pipes are systematically investigated. To allow for the uncertainties of the design variables, a reliability analysis technique has been adopted; this also allows calculation of the relative contribution of the random variables and the sensitivity of the failure probability.

  • PDF

Effect on Coefficient of Subgrade Reaction on Dynamic responses of Buried Pipelines (지중매설관로의 동적응답에 미치는 지반반력계수의 영향)

  • Jeong, Jin-Ho;Lee, Kwang-Yeol;Kang, Hyo-Sub
    • Journal of Power System Engineering
    • /
    • v.21 no.2
    • /
    • pp.83-88
    • /
    • 2017
  • We have examined the effect of values of subgrade reaction coefficient on the dynamic responses(displacement and strain responses) of the buried concrete pipeline of which the end boundary condition is the fixed ends. We have carried out the dynamic analysis of mode superposition method with representative values of coefficient of subgrade reaction applicable to the classified rock masses. We have found that the effect of subgrade reaction coefficient on the dynamic responses of the pipeline appears noticeable for the seismic waves having relatively high frequency and low apparent propagation velocity.

Corrosion Rate of Buried Pipeline by Alternating Current

  • Song, H.S.;Kim, Y.G.;Lee, S.M.;Kho, Y.T.;Park, Y.S.
    • Corrosion Science and Technology
    • /
    • v.4 no.1
    • /
    • pp.1-7
    • /
    • 2005
  • An alternating current (AC) corrosion on buried pipeline has been studied using coupon and ER probe. Coupons and ER probes were applied to the sites from high value of AC voltage to low value based on the survey of AC voltages on buried gas transmission pipeline over the country. Parameters such as AC current density of coupon, AC voltage, cathodic protection potential, soil resistivity and frequency were monitored continually. Corrosion induced by AC was observed even under cathodically protected condition that met cathodic protection criterion (; below -850 mV vs. CSE). Corrosion rate was affected mainly not by AC voltage but by both of frequency and AC current density. An experimental corrosion rate relation could be obtained according to effective AC current density, in which AC corrosion rate increased linearly with effective AC current density, and its slope was 0.619 in coupon method and 0.885 in ER probes.

A Study on Detachability Measurement to Buried Target of GPR (GPR의 매설물 검출능력 측정에 관한 연구)

  • 문두열;이용희;신병철
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.20 no.1
    • /
    • pp.77-83
    • /
    • 2002
  • Recently, the industrial development caused the expansion of city and the field of construction is being larged in size. So, information of construction buried in underground is necessary. In this paper, we were investigated the detachability on various specimen in self-designed test field using the GPR system with three antenna elements and it was constantly radiated 730 MHz frequency. To examine the detachability on various condition, the test were displayed B-scan CRT. And the pattern was exactly positioned when it was compared to the real buried-depth. Therefore, we can confirm similarity between the wave-propagation velocity and previous results.