• Title/Summary/Keyword: Buried concrete pipe

Search Result 26, Processing Time 0.024 seconds

Butt-fusing Procedures and Qualifications of High Density Polyethylene Pipe for Nuclear Power Plant Application (원자력발전소 적용 고밀도 폴리에틸렌 배관의 맞대기 융착절차 및 검증절차 분석)

  • Oh, Young-Jin;Park, Heung-Bae;Shin, Ho-Sang
    • Journal of Welding and Joining
    • /
    • v.31 no.6
    • /
    • pp.1-7
    • /
    • 2013
  • In nuclear power plants, lined carbon steel pipes or PCCPs (pre-stressed concrete cylinder pipes) have been widely used for sea water transport systems. However, de-bonding of linings and oxidation of PCCP could make problems in aged NPPs (nuclear power plants). Recently at several NPPs in the United States, the PCCPs or lined carbon steel pipes of the sea water or raw water system have been replaced with HDPE (high density polyethylene) pipes, which have outstanding resistance to oxidation and seismic loading. ASME B&PV Code committee developed Code Case N-755, which describes rules for the construction of buried Safety Class 3 polyethylene pressure piping systems. Although US NRC permitted HDPE materials for Class 3 buried piping, their permission was limited to only 10-year operation because of several concerns including the quality of fusion zone of HDPE. In this study, various requirements for fusion qualification test of HDPE and some regulatory issues raised during HDPE application review in foreign NPPs are introduced.

Image Processing of GPR Detection Data (GPR 탐사 데이터의 이미지 처리)

  • Lee, Hyun-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.4
    • /
    • pp.104-110
    • /
    • 2016
  • To get the empirical data of GPR detection and to develop the image prosessing program of GPR detection data, GPR detection were proceed by the underground pipes and cavities buried in the Chamber. In the case of non pavement and asphalt pavement, water filled cavity that was buried in 0.7m depth was able to detection. But in the case of 1.0 m and 1.3 m buring depth, water filled cavity was not able to detection. In the case of non-reinforced and reinforced concrete pavement, it was difficult to detect the cavity caused by signal interference. GPRiPP programs was developed for image processing of the GPR detection data. The major processing algorithm were background removal, stacking and gain function. With proper image processing of gain function and background removal in GPRiPP program, it was showed that similar results can be obtained with conventional image processing program.

The Thermal conductivity analysis on the pavement applying geothermal snow melting system (지열 융설시스템을 적용한 포장체에서의 열전도 분석)

  • Lee, Seok-Jin;Kim, Bong-Chan;Seo, Un-Jong;Lee, Seung-Ha;Lee, Joo-Ho
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.221-228
    • /
    • 2010
  • A sliding accident on the road have a high percentage by road freezing, especially, it is often appeared at bridges and Tunnel of freezing areas. Thus, the stability of road operations is enhanced by preventing a partial freezing phenomenon. According to the geothermal snow melting system analysis, a pattern of thermal conductivity is found out about pavement materials of concrete and asphalt when it is buried. The thermal conductivity study is essential that be applied the geothermal snow melting system according to heating exchanger pipe laying of lower pavements. The model tests are conducted on low temperature in freezer using the manufactured test model which is equal to pavement materials. And Many variables are discovered from numerical analyzes of the same conditions with model test.

  • PDF

A Study on the Uplift Capacity of Cylindrical Concrete Foundations for Pipe-Framed Greenhouse (파이프 골조온실의 원주형 콘크리트 기초의 인발저항력에 관한 연구)

  • ;;;;Shino Kazuo
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.40 no.4
    • /
    • pp.109-119
    • /
    • 1998
  • Recently pipe-framed greenhouses are widely constructed on domestic farm area. These greenhouses are extremely light-weighted structures and so are easily damaged under strong wind due to the lack of uplift resistance of foundation piles. This experiment was carried out by laboratory soil tank to investigate the displacement be haviors of cylindrical pile foundations according to the uplift loads. Tested soils were sampled from two different greenhouse areas. The treatment for each soil type are consisted of 3 different soil moisture conditions, 2 different soil depths, and 3 different soil compaction ratios. Each test was designed to be repeated 2 times and additional tests were carried out when needed. The results are summarized as follows : 1. When the soil moisture content are low and/or pile foundations are buried relatively shallow, ultimate uplift capacity of foundation soil was generated just after begining of uplift displacement. But under the high moisture conditions and/or deeply buried depth, ultimate up-lift capacity of foundation soil was generated before the begining of uplift displacement. 2. For the case of soil S$_1$, the ultimate uplift capacity of piles depending on moisture contents was found to be highest in optimum moisture condition and in the order of air dryed and saturated moisture contents. But for the case of soil S$_2$, the ultimate uplift capacity was found to be highest in optimum moisture condition and in the order of saturated and air dryed moisture contents. 3. Ultimate uplift capacities are varied depending on the pile foundation soil moisture conditions. Under the conditions of optimum soil moisture contents with 60cm soil depth, the ultimate uplift capacity of pile foundation in compaction ratio of 80%, 85%, and 90% for soil 51 are 76kg, 115kg, and 155kg, respectively, and for soil S$_2$are 36kg, 60kg, and 92kg, respectively. But considering that typical greenhouse uplift failure be occurred under saturnted soil moisture content which prevails during high wind storm accompanying heavy rain, pile foundation is required to be designed under the soil condition of saturated moisture content. 4. Approximated safe wind velosities estimated for soil sample S$_1$and S$_2$are 32.92m/s and 26.58m/s respectively under the optimum soil condition of 90% compaction ratio and optimum moisture content. But considering the uplift failure pattern under saturated moisture contents which are typical situations of high wind accompanying heavy rain, the safe wind velosities for soil sample S$_1$and S$_2$are not any higher than 20.33m/s and 22.69m/s respectively.

  • PDF

Analysis of Geothermal Melting System Conductivity for Improving Road Safety (도로주행 안정성 향상을 위한 지열 융설시스템 열전도 분석)

  • Lee, Seok-Jin;Kim, Bong-Chan;Lee, Seung-Ha;Seo, Un-Jong;Kim, Jin-Han;Lee, Joo-Ho
    • Journal of Korean Society of societal Security
    • /
    • v.3 no.1
    • /
    • pp.43-50
    • /
    • 2010
  • Sliding accidents on the road have a high percentage by road freezing, especially, they often have appeared at bridges and Tunnel of freezing areas. Thus, the stability of road operations is enhanced by preventing partial freezing phenomenon. According to the geothermal snow melting system analysis, a pattern of thermal conductivity is found out; pavement materials of concrete and asphalt where the system is buried. The heat transfer simulation is essential when the geothermal snow melting system is applied according to heating exchanger pipe placed in the lower pavements. The model tests are conducted on low temperature in freezer using the manufactured test model which is equal to pavement materials. Many variables are discovered from numerical analyses under the same conditions with model test.

  • PDF

The Characteristics of Natural Hazard due to the Impact of Urbanization in Seoul Metropolitan Area : A potential flood hazard study of Anyang-Cheon Watershed (수도권지역 개발에 따른 자연재해 특징분석 : 안양천 유역분지에서 잠재적 수해특성 분석)

  • 성효현
    • Spatial Information Research
    • /
    • v.4 no.1
    • /
    • pp.21-42
    • /
    • 1996
  • The Anyang-cheon is one of the Han River tributaries in Seoul Metropolitan area. It is 35.1km long, has a basin area of 287km2 and touches seven cities of Kyounggi Province and part of Seoul. The purpose of this study were 1) to reconstruct the ancient stream network and to investigate the change of landuse in Anyang-cheon watershed between 1957 and 1991,2) to measure the change of the hydrologic ¬acteristics with urbanization, 3) to suggest the institutional solutions to reduce natural hazard as the area has urbanizedThe main results are as follows: 1.Anyang-cheon river basin has experienced the rapid urbanization and industrialization since 1957. Anyang-cheon stream network was oversimplified in the watershed. The total stream length decreased atributaries in the upper part of river basin have eliminated or buried undergrolmd in pipes. 2.Urbanization impacted to all of the area of Anyang-cht'On watershed. Urbanization in Anyang-cheon watershed corresponds to the large portion of flat area, especially flood - prone zone of river side, and the small portion of Greenbelt to constrain urban expantion in cities. 3.The urbanization of Anyang-cheon watershed produces fundamental changes in watershed hydrology. As infiltration is reduced by the creation of extensive pavement, concrete surface, and sewer pipe, runoff moves more quickly from upland to stream. As a result, runoff from the watershed is flashier, increasing flood hazardAs urban area continue to grow we will need to better utilize stream by protecting and enhancing stream systems.otecting and enhancing stream systems.tems.

  • PDF