• Title/Summary/Keyword: Buoyant

Search Result 222, Processing Time 0.025 seconds

Response of triceratops to impact forces: numerical investigations

  • Chandrasekaran, Srinivasan;Nagavinothini, R.
    • Ocean Systems Engineering
    • /
    • v.9 no.4
    • /
    • pp.349-368
    • /
    • 2019
  • Triceratops is one of the new generations of offshore compliant platforms suitable for ultra-deepwater applications. Apart from environmental loads, the offshore structures are also susceptible to accidental loads. Due to the increase in the risk of collision between ships and offshore platforms, the accurate prediction of structural response under impact loads becomes necessary. This paper presents the numerical investigations of the impact response of the buoyant leg of triceratops usually designed as an orthogonally stiffened cylindrical shell with stringers and ring frames. The impact analysis of buoyant leg with a rectangularly shaped indenter is carried out using ANSYS explicit analysis solver under different impact load cases. The results show that the shell deformation increases with the increase in impact load, and the ring stiffeners hinder the shell damage from spreading in the longitudinal direction. The response of triceratops is then obtained through hydrodynamic response analysis carried out using ANSYS AQWA. From the results, it is observed that the impact load on single buoyant leg causes periodic vibration in the deck in the surge and pitch degrees of freedom. Since the impact response of the structure is highly affected by the geometric and material properties, numerical studies are also carried out by varying the strain rate, and the location of the indenter and the results are discussed.

Effect of Attachment of Buoyant Jet to Shoreline Pollution in a Confined Crossflow (가로흐름 수역에 방류되는 부력젵의 귀환에 의한 연안오염)

  • Yoon, Tae-Hoon;Yook, Woon-Soo
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.6 no.1
    • /
    • pp.34-39
    • /
    • 1994
  • The dilution and the shore attachment of buoyant effluent into a crossflow are investigated experimentally. The effluent is produced by discharging warm water through a side channel into an open channel crossflow with the same depth to the side channel flow. Buoyancy causes the effluent to lift off the bottom, spreads across the crossflow and stays as the surface layer. The geometry of the recirculating region and the dilution of the effluent depend mainly on the buoyancy. The condition of the shore attachment can be specified by the ratios of velocities and Froude numbers.

  • PDF

Change in Cell Size and Buoyant Density of Pseudomonas diminuta in Response to Osmotic Shocks

  • Lee, So-Hee;Cho, Yu-Ree;Choi, Yong-Jin;Kim, Chan-Wha
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.2
    • /
    • pp.326-328
    • /
    • 2001
  • Pseudomonas diminuta (ATCC 19146) has been typically used in the bacterial challenge test for validation of the sterilizing filtration process. Cell size is critical for determining the retention characteristics of membrane filters with pore-size of $0.2{\mu}m$. The changes of cell sizes after osmotic shocks at 150, 260, 500, and 700 mosM were measured by a particle size analyzer and the changes of their buoyant densities were analyzed with a Percoll gradient. The results indicated that there were no significant differences when cells were cultured in 260 mosM medium and osmotically shocked at 500 and 700 mosM. However, the osmotically shocked cells at 150 mosM showed a 38% increase of the cell size compared to the cells at 260 mosM. From these study, we concluded that the worst case condition for validation of a sterilizing filter would be 500 mosM, not because of changes in the cell size, but due to decrease in cell viability under those conditions.

  • PDF

A Study on Mixing Characteristics of Ocean Outfall System with Rosette Diffuser (장미형확산관 형태의 해양방류시스템의 혼합특성 연구)

  • Kim, Young Do;Seo, Il Won;Kwon, Seok Jae;Lyu, Siwan;Kwon, Jae Hyun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.3
    • /
    • pp.389-396
    • /
    • 2008
  • The hybrid model can be used to predict the initial near field mixing and the far field transport of the buoyant jets, which are discharged from the submerged wastewater ocean outfall. In the near field, the jet integral model can be used for single port diffusers while the ${\sigma}$ transformed particle tracking model was used in the far field. In this study, the experimental study was performed to verify the developed hybrid model in the previous research. The developed hybrid model properly predict the surface and vertical concentration distribution of the single buoyant jets with various effluent and ambient conditions. The hybrid model can also simulate the surface concentration distribution of the rosette diffuser except for the parallel diffuser with the higher densimetric Froude number due to the assumption that dynamic effects of the effluent plumes are negligible in the far field. The application of the hybrid model to rosette diffusers can predict the concentration near the diffuser more accurately when the line-plume approximation is used.

Velocity Field Measurements of a Vertical Turbulent Buoyant Jet Using a PIV Technique (PIV 기법을 이용한 비등온 부력제트의 유동구조에 관한 연구)

  • Sin, Dae-Sik;Yun, Jeong-Hwan;Lee, Sang-Jun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.5
    • /
    • pp.611-618
    • /
    • 2001
  • The flow characteristics of a turbulent buoyant jet were experimentally investigated using a single-frame PIV system. The Reynolds number based on the nozzle exit velocity and nozzle diameter was about Re=5$\times$10$^3$. The instantaneous velocity fields in the streamwise plane passing the jet axis were measured in the near field X/D <11 with and without the temperature gradient. By ensemble averaging the instantaneous velocity fields, the spatial distributions of mean velocity, vorticity, and higher-order statistics up to third order were obtained. The temperature difference of 10$\^{C}$ does not affect a significant influence to the flow structure in the near field, but the total entrainment rate is increased slightly. The entrainment rate shows a linear variation with the streamwise distance in the region after X/D=5.0.

Study on the flickering behavior of propane/air and methane/air premixed flame confined in a tube (관내 프로판/공기와 메탄/공기 화염의 펄럭임 현상에 대한 연구)

  • Guahk, Young-Tae;Lee, Dae-Keun;Oh, Kwang-Chul;Shin, Hyun-Dong
    • 한국연소학회:학술대회논문집
    • /
    • 2006.04a
    • /
    • pp.26-31
    • /
    • 2006
  • Flickering behaviors of lean premixed flame of propane/air and methane/air flame anchored by a pilot flame in a tube were investigated. Unsteady behaviors of the flame were monitored by a high speed ICCD camera and the flickering frequency was defined as the number of flame curvatures passing a fixed spatial point in a second. Unlike previous studies in which flames are in open condition so that the flickering mechanism is an unstable interaction of hot buoyant products with the ambient air, flames in this study are surrounded by a tube which means they are not open to ambient air, so that there is no interaction between hot buoyant products and ambient air. Despite the fact, there exists flickering phenomena and the flickering frequency ranges from 10 Hz to 50 Hz which is wider compared to previous studies. We relate the flickering mechanism to flame-generated vorticity and analytic solution for locally approximated flow is used. As a result, the relationship between flickering wavelength and dimensionless vorticity is acquired and the cause of higher range of flickering frequency is explained.

  • PDF

Negative Buoyant Flow into Rectangular Ponds (수평정지수역(水平靜止水域)으로 유입(流入)되는 음부력(陰浮力)흐름)

  • Yoon, Tae Hoon;Chun, Si Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.7 no.4
    • /
    • pp.51-60
    • /
    • 1987
  • A two dimensional negatively buoyant flow from a shallow channel into rectangular ponds is analysed numerically by a finite difference scheme in a stretched coordinate system. In rectangular ponds, the confuguration of plunge flow largely depends on the densimetric Froude number, $Fr_e$, of the inflow. The velocity of front of the plunging flow increases with increasing negative buoyanty(decrease of $Fr_e$). The location of stable plunge point and maximun travel distance of plunge point are found to be a function of dimensionless time and densimetric Froude number. Large vortices develop on the both sides of negative buoyant flow or plunge flow.

  • PDF

Assessment of turbulent heat flux models for URANS simulations of turbulent buoyant flows in ROCOM tests

  • Zonglan Wei;Bojan Niceno ;Riccardo Puragliesi;Ezequiel Fogliatto
    • Nuclear Engineering and Technology
    • /
    • v.54 no.11
    • /
    • pp.4359-4372
    • /
    • 2022
  • Turbulent mixing in buoyant flows is an essential mechanism involved in many scenarios related to nuclear safety in nuclear power plants. Comprehensive understanding and accurate predictions of turbulent buoyant flows in the reactor are of crucial importance, due to the function of mitigating the potential detrimental consequences during postulated accidents. The present study uses URANS methodology to investigate the buoyancy-influenced flows in the reactor pressure vessel under the main steam line break accident scenarios. With a particular focus on the influence of turbulent heat flux closure models, various combinations of two turbulence models and three turbulent heat flux models are utilized for the numerical simulations of three ROCOM tests which have different characteristic features in terms of the flow rate and fluid density difference between loops. The simulation results are compared with experimental measurements of the so-called mixing scalar in the downcomer and at the core inlet. The study shows that the anisotropic turbulent heat flux models are able to improve the accuracy of the predictions under conditions of strong buoyancy whilst in the weak buoyancy case, a major role is played by the selected turbulence models with essentially a negligible influence of the turbulent heat flux closure models.

Transient Buoyant Flows of a Stratified Fluid in a Vertical Channel

  • Park, Jun-Sang
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.5
    • /
    • pp.656-664
    • /
    • 2001
  • A theoretical analysis is performed to describe the qualitative behavior of transient buoyant flows in a vertical channel. Consideration is given to the case of a fluid with a pre-existing stratification. The fluid motion is generated by giving impulsive anti-symmetric step-changes in temperature at the vertical left ad right sidewalls. The qualitative character of the flow is shown to be classified in the Rayleigh number (Ra)-Prandtl number ($sigma$) diagram. The transitory approach to the steady state can be monotonic or oscillatory, depending on ($sigma$-1)$^2$$pi$$^4$ 4$sigma$$R_a$. The prominent characteristics of time-dependent flow are discussed for large $R_a$. The profiles of temperature and velocity in the transient phase are depicted, which disclose distinctive time scales of motion. The transient process is shown to be sensitive to the Prandtl number. The detailed evolutions of flow and temperature fields are illustrated for large $R_a$.

  • PDF

Weightlessness in Water : Its Unexpected Mechanical Effects on Freestyle Swimming

  • Yanai, Toshimasa
    • Korean Journal of Applied Biomechanics
    • /
    • v.12 no.2
    • /
    • pp.393-405
    • /
    • 2002
  • When our body is immersed in water, we experience weightlessness. The degree of weightlessness that we experience varies depending on the proportion of the body immersed in water, being governed by the relationship between the weight of body and the buoyant force acting on the body. Human body during the performance of swimming in no exception to these influences. Swimmers body is subject to a time and position dependent force system. Even the magnitude of the buoyant force acting on the swimmers body at every given instant and the corresponding position of the CB change continuously. The findings of this study support the following conclusions. The buoyancy torque was the primary source of bodyroll exhibited by front crawl swimmers performing at distance pace, accounting for 88 % of the bodyroll. Faster swimmers used buoyancy more effectively to generate bodyroll, partially supporting the postulation that an effective use of buoyancy for bodyroll may reduce the generated hydrodynamic forces to be wasted in non-propulsive directions and maximize forward propulsion.