• Title/Summary/Keyword: Buoyant

Search Result 223, Processing Time 0.023 seconds

Dynamic Response of Tension Leg Platform (Tension Leg Platform의 동적응답에 관한 연구)

  • Yeo, Woon Kwang;Pyun, Chong Kun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.5 no.1
    • /
    • pp.21-30
    • /
    • 1985
  • The tension leg platform (TLP) is a kind of compliant structures, and is also a type of moored stable platform with a buoyancy exceeding the weight because of having tensioned vertical anchor cables. In this paper, among the various kinds of tension leg structures, Deep Oil Technology (DOT) TLP was analyzed because it has large-displacement portions of the immersed surface such as vertical corner pontoons and small-diameter elongated members such as cross-bracing. It also has results of hydraulic model tests, comparable with theorectical analysis. Because of the vertical axes of symmetry in the three vertical buoyant legs and because there are no larger horizontal buoyant members between these three vertical members, it was decided to develop a numerical algorithm which would predict the dynamic response of the DOT TLP using the previously developed numerical algorithm Floating Vessel Response Simulation (FVRS) for vertically axisymmetric bodies of revolution. In addition, a linearized hydroelastic Morison equation subroutine would be developed to account for the hydrodynamic pressure forces on the small member cross bracing. Interaction between the large buoyant members or small member cross bracings is considered to be negligible and is not included in the analysis. The dynamic response of the DOT TLP in the surge mode is compared with the results of the TLP algorithm for various combinations of diffraction and Morison forces and moments. The results which include the Morison equation are better than the results for diffraction only. This is because the vertically axisymmetric buoyant members are only marginally large enough to consider diffractions effects. The prototype TLP results are expected to be more inertially dominated.

  • PDF

Signaling Protein Complex Formation in Detergent Resistant Membrane of Bovine Photoreceptor Rod Outer Segments

  • Liu, Han;Seno, Keiji;Hayashi, Fumio
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.275-277
    • /
    • 2002
  • We have recently found that a detergent-resistant raft like membrane (DRM) can be prepared from bovine rod outer segment membranes as a low-density buoyant fraction in sucrose density gradient ultracentrifugation. G protein (transducin) and its effector enzyme (phosphodiesterase: PDE) drastically change their affinities to DRM in the process of phototransduction. We report here that the recruitment of transducin and/or $^2$PDE to DRM has close relationship with their states in signal transduction. Active T$\alpha$/PDE-complex has a high affinity to DRM, whereas inactive transducin, or inactive PDE are excluded from DRM. Active T$\alpha$/PDE-complex seems to bind to a GTPase activating protein (GRS9) in multi- protein complexes localized on DRM. Physiological significance of the multi-protein complex on the raft-like membrane in vertebrate phototransduction would be discussed.

  • PDF

On the Selection of Hydraulic System for Hatch Cover (Hatch Cover의 유압장치의 선정에 관한 연구)

  • Kim, Hyeong-Su
    • 한국기계연구소 소보
    • /
    • s.14
    • /
    • pp.157-168
    • /
    • 1985
  • In cargo vessels, hatch covers are used to prevent sea water from penetrating into the cargo hold and to keep the vessels buoyant. And also they can be used as cargo loading devices as in container ships. In this paper, hatch covers are classified according to their operation method and their characteristics are briefly demonstrated. Systematic description on the scantling of the hatch cover panel and how to determine the capacity of the hydraulic power system fir folding hatch cover panels are also presented. The hydraulic power system is selected from the result of dynamic analysis of the movements of the hatch cover panels when stored on the upper deck. The hatch coaming height is determined as shortly as the hydraulic cylinders can be installed. This study deals with the hatch cover system of the medium sized multi-purpose cargo vessel, but the results of this study can be applied to large-sized cargo vessels with a slight change of the input data in the calculations. Further research on the high pressure pump, hydraulic cleating system and hydraulic piping will realize domestic production of the whole hatch cover system which have been supplied from foreign makers until now

  • PDF

Thermal Effluent through Extruded Side Channel

  • Yoon, Tae-Hoon;Yook, Woon-Soo;Yi, Young-Kon
    • Korean Journal of Hydrosciences
    • /
    • v.6
    • /
    • pp.67-79
    • /
    • 1995
  • The reattachment of buoyant efflluent to a shore in a crossflow is investigated experimentally. The effluent is prodeced by discharging heated water through a projected side channel into a confined crossflow of the same depth. In the projecting effluent, the size of recirculating region, which is formed by deflected thermal plume on the lee of the effluent, tends to increase, but the maximum temperature decreases in the direction of the crossflow and it has more uniform transverse spreading compared to non-projected type. The heat flux across the crossflow is found to be independent of the projceted length of the side channel under relatively high buoyancy flux on the contrary to low buoyancy flux. The reattachment of th effluent can be specified by both velocity ratio and densimetric Froude number, whereas only the velocity ratio is governing factor to the reattachment of the effluent in the case of non-projecting type.

  • PDF

Characteristics of an Entrainment into the Turbulent Buoyant Jet in a Cross Flow (직교류에서 난류제트로 유입되는 유량에 관한 고찰)

  • Kim, Hyung Min;Kim, Eunpil
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.3
    • /
    • pp.342-351
    • /
    • 1999
  • A jet injected normally into a cross flow has been found to have the cross section of a horseshoe shape. It occurs by a twin vortex motion in the region downstream of the jet injection. Such a flow is inherently and highly three-dimensional and numerical calculations should play an important role. The three-dimensional momentum equations with buoyancy effect and energy equation are solved to obtain the velocity distributions, center-line trajectories, cross sectional shape and entrainment. The density difference is sufficiently small, so that the Boussinesq approximation is considered to be valid. The SIMPLE algorithm is applied in a staggered grid system of a calculational domain for the numerical method.

Simulation of Biocube- Fluid Mixture Using Combined Formulation

  • Choi, Hyoung-Gwon;Lee, Myeong-Ho;Yong, Ho-Taek
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.8
    • /
    • pp.1418-1427
    • /
    • 2004
  • Combined formulation developed for the fluid-particle mixture is introduced to simulate the biocube-fluid mixture flow, which is utilized for sewage disposal. Some tricky boundary conditions are introduced in order to simulate the effect of screen wall and air bubble, which is injected from the bottom of sewage reservoir. It has been shown that a circulated flow pattern, which was observed in experiment, is reproduced from the present numerical simulation. Furthermore, the effect of biocube density on the distribution pattern of biocube is also studied. It has been shown that a biocube whose density is slightly smaller than that of surrounding fluid or neutrally buoyant one are optimal for the uniform distribution of biocube.

Prediction of 2-Dimensional Unsteady Thermal Discharge into a Reservoir (온수의 표면방출에 의한 2차원 비정상 난류 열확산 의 예측)

  • 박상우;정명균
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.7 no.4
    • /
    • pp.451-460
    • /
    • 1983
  • Computational four-equation turbulence model is developed and is applied to predict twodimensional unsteady thermal surface discharge into a reservoir. Turbulent stresses and heat fluxes in the momentum and energy equations are determined from transport equations for the turbulent kinetic energy (R), isotropic rate of kinetic energy dissipation (.epsilon.), mean square temperature variance (theta. over bar $^{2}$), and rate of destruction of the temperature variance (.epsilon. $_{\theta}$). Computational results by four-equation model are favorably compared with those obtained by an extended two-equation model. Added advantage of the four-equation model is that it yields quantitative information about the ratio between the velocity time scale and the thermal time scale and more detailed information about turbulent structure. Predicted time scale ratio is within experimental observations by others. Although the mean velocity and temperature fields are similarly predicted by both models, it is found that the four-equation model is preferably candidate for prediction of highly buoyant turbulent flows.

Measurement of the Shear Rate-Dependent Thermal Conductivity for Suspension with Microparticles (미립자를 포함한 현탁액의 전단율에 의존적인 열전도율 측정)

  • Lee, Sung-Hyuk;Shin, Sehyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.8
    • /
    • pp.1141-1151
    • /
    • 1998
  • An effective thermal conductivity measurement for suspensions of microparticles in oil mixture is conducted in order to evaluate the shear rate-dependence of the thermal conductivity of suspensions. Measurements are made for rotating Couette flows between two concentric cylinders. The rotating outer cylinder is immersed into a constant temperature water bath while the stationary inner cylinder is subject to a uniform heat fluff. Test fluids are made to be homogeneous suspensions, in which neutrally buoyant microparticles ($d=25{\sim}300{\mu}m$) are uniformly dispersed. The present measurements show strong shear-rate dependent thermal conductivities for the suspensions, which are higher than those at zero shear rate. The shear rate dependent thermal conductivity increases with the particle size and volume concentration.4 new model for shear rate-dependent thermal conductivity of microparticle suspensions is proposed; the correlation covers from zero shear rate value to asymptotic plateau value at moderately high shear rates.

A Numerical K-e Two-Equation Model for Investigating the Hydrodynamics of Flow in Two-Dimensional Density Fields (이차원밀도장에서의 유동을 해석하기 위한 수치모델의 개발)

  • 허재영
    • Water for future
    • /
    • v.26 no.4
    • /
    • pp.61-71
    • /
    • 1993
  • To investigate the structure of internal flow hydrodynamically, the complete vertical equation of motion should be assembled into the model. In the present study a numerical simulation model not hydrodynamically approximated is established. From the comparison of the predicted results with the computed results from k-$ two equation turbulence model by Huh et. al.(1991)and the experimental data by Nakatsuji(1984), the vertical acceleration and its effects on the development of buoyant surface jets are evaluated quantitatively.

  • PDF

A Study on the Development of Hourly Evaporation Recording Instrument for Class A Pan (대형증발계용 매시간 증발 기록계 개발에 관한 연구)

  • Bu-Yong Lee
    • Journal of Environmental Science International
    • /
    • v.10 no.5
    • /
    • pp.323-327
    • /
    • 2001
  • A new method is developed to estimate the evaporation of water from a surface with high accuracy and resolution. The principle of new method is to detect a weight change of buoyant weight according to a change in water level of Class A Pan mesured by the use of a strain-gauge load cell. Field test of evaporation recording new instrument was carried out at Suwon for 10 days July 1999. It is possible in field observation to measure hourly evaporation amount by newly developed evaporation recording instrument in Class A Pan against strong solar radiation. Present study provide a possibility of domestic high accuracy instrument development below than 0.1mm water level measurement accuracy. If there is low humidity and high wind speed conditions which is possible to evaporate from water surface during night time. And it needs continuous study to understand between meteorological elements and latent heat effect at ground level by field observation study using high accuracy evaporation recording instrument.

  • PDF