• Title/Summary/Keyword: Buoyancy flow

Search Result 268, Processing Time 0.027 seconds

A multilayer Model for Dynamics of Upper and Intermediate Layer Circulation of the East Sea (동해의 상, 중층 순환 역학에 대한 다층모델)

  • 승영호;김국진
    • 한국해양학회지
    • /
    • v.30 no.3
    • /
    • pp.227-236
    • /
    • 1995
  • A simple layer model based on isophcnal coordinate is applied to the East Sea to examine the dynamics of circulation. The results confirm the existing knowledge about role of inflow-outflow and wind in driving the circulation. It is found, however, that the buoyancy flux generates quite different circulation pattern; it enhances the inflow-outflow driven circulation and has a convective nature. The circulation considering all these effects resembles the schematic one presently known. In the circulation, the intermediate layer is outcropped in the north off the northern boundary, ventilated here and flows cyclonically in the northern part of basin. This water, however, does not flow southward directly because of the strong eastward (separating from the coast) current in the layer above. This water also loses its potential vorticity while traveling around the periphery of the outcropping region and is thus characterized by minimum potential vorticity in the interior of the basin.

  • PDF

Close-contact melting of ice in a horizontal cylinder (수평원관내 얼음의 접촉융해과정)

  • ;;Ro, Sung Tack
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.10
    • /
    • pp.2595-2606
    • /
    • 1995
  • Buoyancy-assisted melting of an unconstrained ice in an isothermally heated horizontal enclosure was numerically analyzed in a range of wall temperatures encompassing the density inversion point. The problem as posed here involves two physically distinct domains each of which has its own scales and respective heat transfer mode. These two domains join at the junction where the liquid squeezed out of the film region flushes into the lower melt pool. Both of these domains have been treated separately in the literature by a patching technique which invokes several, otherwise unnecessary, assumptions. The present study eliminates successfully such a superfluous procedure by treating the film and lower melt pool regions as a single domain. As a result of this efficient solution procedure, the interaction of the water stream ejected at the junction and the natural convection in the melt pool could be clarified for different wall temperatures. Though limited by two-dimensionality, the present results conformed indirectly the earlier reported transition of the flow pattern, as the wall temperature was increased over the density inversion point. The transient evolution of the melting surface, the time rate of change in melt volume fraction, the local and temporal variation of the heat transfer coefficients are analyzed and presented.

A Numerical Analysis of Thermal Discharge using $\kappa-\imath$ Turbulence Closure ($\kappa-\imath$ 난류모델을 이용한 온배수 수치해석)

  • 최흥식
    • Water for future
    • /
    • v.29 no.2
    • /
    • pp.199-207
    • /
    • 1996
  • To evaluate the usage of $\kappa-\imath$ turbulence closure for the analysis of thermal discharge behavior, a two-dimensional depth-integrated numerical model is developed. The developed model is applied to a steady flow in an open channel with simle geometry and the numerical results agree well with existing experimental data. The adequate simulation of recirculation, reattachment, and excess temperature rise at downstream of the outlet in the channel attributes to the correct calculation of turbulent eddy viscosity and diffusivity by $\kappa-\imath$ turbulence model. For an accurate prediction of thermal discharge behavior, the introduction of buoyancy production term, the modification of source/sink, and the correct input of turbulence constants of the $\kappa-\imath$ turbulence model are required.

  • PDF

Performance Improvement and Validation of Advanced Safety Injection Tanks (신형안전주입탱크의 성능개선 및 검증)

  • Youn, Young Jung;Chu, In-Cheol;Kwon, Tae-Soon;Song, Chul-Hwa
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.7 no.1
    • /
    • pp.1-8
    • /
    • 2011
  • Advanced SITs of the evolutionary PWRs have the advantage that they can passively control the ECC water discharge flow rate. Thus, the LPSI pumps can be eliminated from the safety injection system owing to the benefit of the advanced SITs. In the present study, a passive sealing plate was designed in order to overcome the shortcoming of the advanced SITs, i.e., the early nitrogen discharge through the stand pipe. The operating principle of the sealing plate depends only on the natural phenomena of buoyancy and gravity. The performance of the sealing plate was evaluated using the VAPER test facility, equipped with a full-scale SIT. It was verified that the passive sealing plate effectively prevented the air discharge during the entire duration of the ECC water discharge. Also, the major performance parameters of the advanced SIT were not changed with the installation of the sealing plate.

Comprehensive Field Measurement of Indoor Air and Thermal Quality in Naturally Ventilated Office Building with Double-Skin Façade

  • Ito, Kazuhide;Shiraishi, Yasuyuki
    • International Journal of High-Rise Buildings
    • /
    • v.2 no.4
    • /
    • pp.293-314
    • /
    • 2013
  • Double-Skin Façade (DSF), which is a kind of passive indoor environmental control technique, is effective way to control environmental loads while maintaining the transparency especially in perimeter zone and hence the adoption example of DSF keep increasing recently. The objective of this study was to perform a field survey of air quality environment with natural ventilation through DSF and thermal environment within office building with six stories during a mild climate period in Japan. Moreover, to understand the comprehensive environmental performance of the target building, questionnaire survey was conducted to subjectively evaluate the productivity and satisfaction with the environmental factors in office space. In this field measurement, there was a positive correlation between the DSF internal ventilation flow and the amount of solar radiation on the DSF normal surface; the primary driving force for ventilation in the DSF was considered to be the buoyancy force caused by solar radiation. The results of questionnaire survey with regard to productivity level indicated the need for improvement in the thermal (temperature) and spatial environment (room size and furniture placement).

The finite difference analysis on temperature distribution by coordinate transformation during melting process of phase-change Material (상변화 물질의 용융과정에 있어서 좌표변환을 이용한 온도분포의 해석적 연구)

  • Kim, J.K.;Yim, J.S.
    • Solar Energy
    • /
    • v.5 no.2
    • /
    • pp.77-83
    • /
    • 1985
  • An analysis is performed to investigate the influence of the buoyancy force and the thickness variation of melting layer in the containment that is filled with phase-change Material surrounding a cylindrical heating tube during melting process. The phase-change material is assumed to be initially solid at its phase-change temperature and the remaining solid at any given time is still at the phase-change temperature and neglecting the effect of heat transfer occuring within the solid. At the start of melting process, the thickness of melting layer is assumed to be a stefan-problem and after the starting process, the change of temperature and velocity is calculated using a two dimensional finite difference method. The governing equations for velocity and temperature are solved by a finite difference method which used SIMPLE (Semi Implicit Method Pressure linked Equations) algorithm. Results are presented for a wide range of Granshof number and in accordance with the time increment and it is founded that two dimensional fluid flow occurred by natural convection decreases the velocity of melting process at the bottom of container. The larger the radius of heating tube, the higher heat transfer is occurred in the melting layer.

  • PDF

3-D CFD Analysis of the CANDU-6 Moderator Circulation Under Nnormal Operating Conditions

  • Yoon, Churl;Rhee, Bo-Wook;Min, Byung-Joo
    • Nuclear Engineering and Technology
    • /
    • v.36 no.6
    • /
    • pp.559-570
    • /
    • 2004
  • A computational fluid dynamics model for predicting moderator circulation inside the Canada deuterium uranium (CANDU) reactor vessel has been developed to estimate the local subcooling of the moderator in the vicinity of the calandria tubes. The buoyancy effect induced by the internal heating is accounted for by the Boussinesq approximation. The standard $k-{\varepsilon}$ turbulence model with logarithmic wall treatment is applied to predict the turbulent jet flows from the inlet nozzles. The matrix of the calandria tubes in the core region is simplified to a porous media in which the anisotropic hydraulic impedance is modeled using an empirical correlation of pressure loss. The governing equations are solved by DFX-4.4, a commercial CFD code developed by AEA technology. The resultant flow patterns of the constant-z slices containing the inlet nozzles and the outlet port are "mined-type", as observed in the former 2-dimensional experimental investigations. With 103% full power for conservatism, the maximum temperature of the moderator is $82.9^{\circ}C$ at the top of the core region. Considering the hydrostatic pressure change, the minimum subcooling is $24.8^{\circ}C$.

Effect of Radiative Mean Temperature on Thermal Comfort of Underfloor Air Distribution System (바닥공조시스템에서 복사온도가 열적 쾌적성에 미치는 영향)

  • Chung, Jae-Dong;Hong, Hi-Ki;Yoo, Ho-Seon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.11
    • /
    • pp.711-717
    • /
    • 2008
  • Despite the fact that UFAD(Under Floor Air Distribution) systems have many benefits and are being applied in the field in increasing numbers, there is a strong need for an improved fundamental understanding of several key performance features of these systems. This study numerically investigates the effect of supplied air temperature and supplied flow rate on the performance of UFAD, especially focused on thermal comfort. Also this study has compared UFAD with conventional overhead air distribution system. In contrast to the well-mixed room air conditions of the conventional overheat system, UFAD system produces an overall floor-to-ceiling airflow pattern that takes advantage of the natural buoyancy produced by heat sources in the occupied zone and more efficiently removes heat loads and contaminants from the space. Thermal comfort parameters were evaluated by CFD approach and then PMV was computed to detect the occupants' thermal sensation. Results show that radiative mean temperature plays crucial role on the evaluating PMV. Until now, the radiative temperature has been the missing link between CFD and thermal comfort, but the present study paves the way for overcoming this weakness.

Design and Analysis of Piezoelectric Energy Harvesting Device Using Waves (파도를 이용한 압전 에너지 수확 장치의 설계 및 해석)

  • Na, Yeong-min;Lee, Hyun-seok;Kang, Tae-hun;Park, Jong-kyu;Park, Tae-gone
    • Korean Journal of Materials Research
    • /
    • v.25 no.10
    • /
    • pp.523-530
    • /
    • 2015
  • Electricity generation through fossil fuels has caused environmental pollution. To solve this problem, research on new renewable energy (solar, wind, geothermal heat, etc.) to replace fossil fuels is in progress. These devices are able to consistently generate power. However, they have many drawbacks, such as high installation costs and limitations in possible set-up environments. Thus, piezoelectric harvesting technology, which is able to overcome the limitations of existing energy technologies, is actively being studied. Piezoelectric harvesting technology uses the piezoelectric effect which occurs in crystals that generate voltage when stress is applied. Therefore, it has advantages such as a wider installation base and lower technological cost. In this study, a piezoelectric energy harvesting device based on constant wave motion was investigated. This device can regenerate electricity in a constant turbulent flow in the middle of the sea. The components of the device are circuitry, a steel bar, an bimorph piezoelectric element and buoyancy elements. In addition, a multiphysical analysis coupled with the structure and piezoelectric elements was conducted to estimate the performance of the device. With this piezoelectric energy harvesting device, the displacement and electric power were analyzed.

Overview of Fire Safety onboard International Space Station(ISS): Characteristics of Flame Ignition, Shape, Spread, and Extinction in Microgravity (국제우주정거장 화재안전 연구개괄: 마이크로중력화염의 특성(점화/형상/전파/소멸특성))

  • Park, Seul-Hyun;Hwang, Cheol-Hong
    • Journal of the Korean Society of Combustion
    • /
    • v.17 no.4
    • /
    • pp.21-29
    • /
    • 2012
  • Due to a significant leap in the science and technology, the manned space exploration that has started with suborbital flights is now being expanded into the deep space. The space superpowers such as the U.S. and Russia have been making an effort to further develop the manned space technology. Among such technologies, the fire safety technology in microgravity has recolonized as one of the most critical factors that must be considered for the manned space mission design since the realistic fire broke out onboard the Mir station in 1997. In the present study, the flame characteristics such as flame ignition, shape, spread, and extinction that are critical to understand the fire behavior under microgravity conditions are described and discussed. The absence of buoyancy in microgravity dominates the mass transport driven by diffusiophoretic and thermophorectic fluxes (that are negligible in normal gravity) and influences the overall flame characteristics-flame ignition, shape, spread, and extinction. In addition, the cabin environments of the pressurized module (PM) including the oxygen concentration, ambient pressure, and ventilation flow(which are always coupled with microgravity condition during the ISS operation) are found to be the most important aspects in characterizing the fire behavior in microgravity.