• Title/Summary/Keyword: Buoy motion

Search Result 69, Processing Time 0.026 seconds

An experimental study on compliant buoy mooring system in shallow water (천해역 유연부이 계류시스템에 관한 실험연구)

  • Kim, Jin-Ha;Hong, Sa-Young;Hong, Seok-Won;Hong, Sup
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.155-160
    • /
    • 2002
  • In this paper, a compliant buoy mooring system of a floating cylindrical structure in shallow water depth is studied experimentally. The compliant buoy mooring system consists of four buoys, vertical mooring legs and horizontal mooring lines. A series of model test were carried out at KRISO ocean engineering basin for various mooring parameters; line length, pretension of mooring leg and mooring layouts and environmental conditions; regular and irregular waves combined with current and wind. The mooring line tensions and 6-DOF motions of the floating structure were measured using water-proof load cells and 3 CCD camera system. The results of a series of model tests were discussed on nonlinear motion behaviors of the floating structure and characterisitics of cumulative distributions of mooring line peak tensions.

  • PDF

Design of Wave Energy Extractor with a Linear Electric Generator -Part II. Linear Generator (선형발전기가 탑재된 파랑에너지 추출장치 설계 -II. 선형발전기)

  • Cho, Il Hyoung;Choi, Jang Young
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.17 no.3
    • /
    • pp.174-181
    • /
    • 2014
  • Design procedure of LEG(Linear Electric Generator) is introduced by performing the time-domain analysis for the heaving motion of a floating buoy coupled with LEG. A vertical truncated buoy is selected as a point absorber and a double-sided Halbach array mover and cored slotless stator is adopted as a linear electric generator. LEG with a double-sided Halbach array mover and cored slotless stator is designed with the input data such as the heave motion velocity and wave exciting forces in time-domain. The validity of designed LEG is confirmed by performing generating-characteristic-analysis under the sinusoidal motion of a buoy, based on the numerical techniques such as FE(Finite Element) analysis. In particular, an ECM(Equivalent Circuit Method) is employed as the design tool for the prediction of generating characteristics under irregular wave conditions. Finally, we confirm that the ECM gives reasonable and fast results without sacrifice of accuracy.

Design of Oceanography Buoy - Part II: Mooring System (해양관측용 부이의 설계 건전성 평가 - Part II: 계류시스템 구조건전성 평가)

  • Keum, Dong-Min;Kim, Tae-Woo;Han, Dae-Suk;Lee, Won-Boo;Lee, Jae-Myung
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.1
    • /
    • pp.89-95
    • /
    • 2009
  • The purpose of the present study was to evaluate the safety under extreme environmental conditions and the dynamic safety under service environment conditions, of oceanographic buoy mooring systems consisting of a variety of materials, including chain, wire rope, nylon rope, and polypropylene rope. For the static safety assessment of a mooring system, after the calculation of external forces and the division of a mooring system into finite elements, the numerical integral was conducted to yield the elemental static tension until satisfying the geometrical convergence condition. To evaluate the dynamic safety, various processes were considered, including data collection about the anticipated areas for mooring, a determination of the parameters for the interpretation, the interpretation of the dynamic characteristics based on an analytic equation that takes into account the heave motion effect of a buoy hull and a mooring system, and a fatigue analysis of the linear cumulative damage. Based on the analysis results, a supplementary proposal for a wire rope that has a fracture in an actual mooring area was established.

Latching Control Technology for Improvement of Extracted Power from Wave Energy Converter (파력발전기 추출파워 향상을 위한 래칭 제어기법)

  • Cho, Il Hyoung
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.18 no.4
    • /
    • pp.282-290
    • /
    • 2015
  • In this study, a latching control technology, proposed by Sheng et al.(2015), was applied in order to maximize the extraction efficiency of WEC (Wave Energy Converter), which is the heaving buoy coupled with linear electric generator. The latching control is the phase-control technique for improving the wave energy conversion with appropriate latching duration of keeping the buoy fixed. From the time-domain analysis in regular waves, the latching control technology can significantly improve the heave velocity and extracted power, even though the resonance condition is not satisfied. By using the latching control technology, the draft of buoy as well as the required PTO damping force can be significantly reduced along with increased extracted power, which is a big advantage in manufacturing the WEC.

Resonance and Response of the Submerged Dual Buoy/Porous-Membrane Breakwaters in Oblique Seas

  • Kee, S.T.
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.2
    • /
    • pp.22-32
    • /
    • 2001
  • The numerical investigation of obliquely incident wave interactions with fully submerged dual buoy/porous-membrane floating breakwaters placed in parallel with spacing is studied based on linear potential theory and Darcy's law. The numerical solutions are obtained by using a discrete-membrane dynamic model and second-kind modified Bessel function distribution over the entire boundaries of fluid regions. First, numerical solutions for an idealized dual submerged system without buoys are obtained. Second, a more practical dual submerged system with membrane tension provided by buoys at its tops is investigated by the multi-domain boundary element method particularly devised for dual buoy/porous-membrane problems with gaps. The velocity potentials of wave motion are coupled with porous-membrane deformation, and solved simultaneously since the boundary condition on porous-membrane is not known in advance. The effects of varying permeability on membranes and wave characteristics are discussed for the optimum design parameters of systems previously studied. The inclusion of permeability on membrane eliminates the resonances that aggravate the breakwater performance. The system is highly efficient when waves generated by the buoys and membranes were mutually canceled and its energy at resonance frequency dissipates through fine pores on membranes.

  • PDF

Development of a Multi-Absorbing Wave Energy Converter using Pressure Coupling Principle (압력커플링을 이용한 다수개의 부표를 가진 파력발전기 개발)

  • Do, H.T.;Nguyen, M.T.;Phan, C.B.;Lee, S.Y.;Park, H.G.;Ahn, K.K.
    • Journal of Drive and Control
    • /
    • v.11 no.3
    • /
    • pp.31-40
    • /
    • 2014
  • This paper proposes a multi absorbing wave energy converter design, in which a hydrostatic transmission is used to transfer wave energy to electric energy. The most important feature of this system is its combination of the pressure coupling principle with the use of a hydraulic accumulator to eliminate the effects of wave power fluctuation; this maintains a constant speed of the hydraulic motor. Tilt motion of a floating buoy was employed as the power take-off mechanism. Furthermore, a PID controller was designed to carry out the speed control of the hydraulic motor. The design offers some advantages such as extending the life of the hydraulic components, increasing the amount of energy harvested, and stabilizing the output speed.

Improvement of Coastal Wave Observation Reliability by Using Composite Type Cables

  • Nagai, Toshihiko;Kado, Hiromi;Nakayama, Masakatsu;Nakashima, Hiroyasu;Inoue, Mitsuru;Simizu, Yasuo;Nakagawa, Tohru
    • Proceedings of the Korean Society of Coastal and Ocean Engineers Conference
    • /
    • 2003.08a
    • /
    • pp.10-17
    • /
    • 2003
  • Acoustic and pressure type seabed installed wave sensors have advantage in observing long period infra-gravity wave and tsunami, while buoy type wave gauges which measure acceleration of the moored buoy motion are not able to detect long period waves. That's why most of the Japanese coastal wave observation sensors are seabed installed typed ones. Nationwide Japanese coastal wave observation systems with seabed installed sensors are gradually clarifying long-period tsunami profiles and infra-gravity wave characteristics (Nagai.et.al., 1996, 1997,2000,2002a,2002b). (omitted)

  • PDF

Power Estimation and Optimum Design of a Buoy for the Resonant Type Wave Energy Converter Using Approximation Scheme (근사기법을 활용한 공진형 파력발전 부이의 발전량 추정 및 최적설계)

  • Koh, Hyeok-Jun;Ruy, Won-Sun;Cho, Il-Hyoung
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.1
    • /
    • pp.85-92
    • /
    • 2013
  • This paper deals with the resonant type of a WEC (wave energy converter) and the determination method of its geometric parameters which were obtained to construct the robust and optimal structure, respectively. In detail, the optimization problem is formulated with the constraints composed of the response surfaces which stand for the resonance period(heave, pitch) and the meta center height of the buoy. Use of a signal-to-noise ratio calculated from normalized multi-objective results with the weight factor can help to select the robust design level. In order to get the sample data set, the motion responses of the power buoy were analyzed using the BEM (boundary element method)-based commercial code. Also, the optimization result is compared with a robust design for a feasibility study. Finally, the power efficiency of the WEC with the optimum design variables is estimated as the captured wave ratio resulting from absorbed power which mainly related to PTO (power take off) damping. It could be said that the resultant of the WEC design is the economical optimal design which satisfy the given constraints.

Link Quality Enhancement with Beamforming Using Kalman-based Motion Tracking for Maritime Communication

  • Kyeongjea Lee;Joo-Hyun Jo;Sungyoon Cho;Kiwon Kwon;Dong Ku Kim
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.6
    • /
    • pp.1659-1674
    • /
    • 2024
  • Conventional maritime communication struggles to provide high data rate services for Internet of Things (IoT) devices due to the variability of maritime environments, making it challenging to ensure consistent connectivity for onboard sensors and devices. To resolve this, we perform mathematical modeling of the maritime channel and compare it with real measurement data. Through the modeled channel, we verify the received beam gain at buoys on the ocean surface. Additionally, leveraging the modeled wave motions, we estimate future angles of the buoy to use the Extended Kalman Filter (EKF) for design beamforming strategies that adapt to the evolving maritime environment over time. We further validate the effectiveness of these strategies by assessing the results from an outage probability perspective. focuses on improving maritime communication by developing a dynamic model of the maritime channel and implementing a Kalman filter-based buoy motion tracking system. This system is designed to enable precise beamforming, a technique used to direct communication signals more accurately. By improving beamforming, the aim is to enhance the quality of communication links, even in challenging maritime conditions like rough seas and varying sea states. In our simulations that consider realistic wave motions, you've observed significant improvements in link quality due to the enhanced beamforming technique. These improvements are particularly notable in environments with high sea states, where communication challenges are typically more pronounced. The progress made in this area is not just a technical achievement; it has broad implications for the future of maritime communication technologies. This paper promises to revolutionize the way we approach communication in maritime environments, paving the way for more reliable and efficient information exchange on the seas.