• Title/Summary/Keyword: Bunsen flame

Search Result 24, Processing Time 0.034 seconds

Laminar Burning Velocity Measurement of SNG/Air Flames - A Comparison of Bunsen and Spherical Flame Method - (SNG/공기 화염의 층류 연소속도 측정 - 분젠과 구형 화염법 비교 -)

  • KIM, DONGCHAN;LEE, KEEMAN
    • Journal of Hydrogen and New Energy
    • /
    • v.27 no.6
    • /
    • pp.737-746
    • /
    • 2016
  • This article describes a comparison on laminar burning velocity measured by Bunsen and spherical flame methods of synthetic natural gas (SNG) with various composition of hydrogen. In this study, the laminar burning velocity measurements were employed by Bunsen burner and cylindrical constant combustor at which flame images were captured by Schlieren system. These results were also compared with numerical based on CHEMKIN package with GRI 3.0, USC-II and UC Sandiego mechanism. In case of spherical flames, the suitable flame radius range and theoretical models were verified using the well-known previous results in methane/air flames. As an experimental condition, hydrogen content of SNG was adjusted 0% to 11%. Equivalence ratios of Bunsen flames were adjusted from 0.8 to 1.6. On the other hand, those of spherical flames were adjusted from 0.6 to 1.4, relatively. From results of this study, the both laminar burning velocities measured in Bunsen and spherical flame methods were resulted in similar tendency. As the hydrogen content increased, the laminar burning velocity also increased collectively. Laminar burning velocity of measured SNG-air flames was best coincided with GRI 3.0 mechanism by comparison of reaction mechanisms.

Measurement of Laminar Flame Speed of Syngas(H2/CO)/Air Premixed Flame using the Bunsen Burner Method (분젠 버너법을 이용한 합성가스(H2/CO)/공기 예혼합화염의 층류 연소속도 측정)

  • Jeong, Byeonggyu;Lee, Kee-Man
    • 한국연소학회:학술대회논문집
    • /
    • 2012.04a
    • /
    • pp.181-183
    • /
    • 2012
  • Syngas laminar flame speed measurements were carried out at atmospheric pressure and ambient temperature using the Bunsen flame configuration with nozzle burner as a fundamental study on flame stability of syngas. Representative syngas mixture compositions ($H_2:CO$) such as 25:75%, 50:50% and 70:25% and equivalence ratios from 0.5 to 1.4 were investigated. The measured laminar flame speeds were in good agreement with the previous numerical data as well as experimental data available in the literatures over a wide range of equivalence ratio tested. It was reconfirmed that the laminar flame speed gradually increased with the increase in $H_2$ content in a fuel mixture. In particular, the significant increasing rate of flame speed was observed with the increase in equivalence ratio.

  • PDF

Prediction of Turbulent Premixed Flamefield in Bunsen Burner (Bunsen Buner 난류 예혼합 화염장의 해석)

  • Cho, Ji-Ho;Kim, Hoo-Joong;Kim, Yong-Mo
    • 한국연소학회:학술대회논문집
    • /
    • 2003.05a
    • /
    • pp.195-199
    • /
    • 2003
  • The stoichiometric methan/air premixed turbulent flames at the axisymmetric Bunsen burner situation are numerically investigated. To account for the chemistry-turbulence interaction in the turbulent premixed flames, the steady laminar flamelet library method has been adopted. The flame front is tracked by using the Level-Set Approach. Turbulence is represented by the ${\kappa}-{\varepsilon}$ modeling with a Pope's correction. The detailed comparison between prediction and measurement has made for the flame field in terms of velocity, turbulent kinetic energy, and normarlized temperature.

  • PDF

Experimental Performance Evaluation of Optical Receiving Probe (광학식 수광 프로브의 실험적 성능평가)

  • Yang, Young-Joon
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.7 no.3
    • /
    • pp.265-271
    • /
    • 2004
  • A light collecting probe named Multi-colored Integrated Receiving Optics (MICRO) is experimentally examined to verify its performance. For these purposes, the time-series signals of MICRO probe is compared with those of electro-static probe and light-guided probe by monitoring, for example. such as OH radical chemiluminescence. CH radical band and droplet Mie scattering In addition, the experiment was conducted by using laminar premixed Bunsen flame, turbulent premixed Bunsen flame and premixed spray flame, respectively. It was confirmed that the performance of MICRO probe was very useful and convenient to obtain the chemiluminescence signals from local regions in turbulent premixed Bunsen flame and premixed spray flame.

  • PDF

Application of Optical Receiving Probe in Combustion Field (연소장에서의 광학식 수광프로브의 적용)

  • Yang, Young-Joon
    • Journal of Sensor Science and Technology
    • /
    • v.13 no.5
    • /
    • pp.335-341
    • /
    • 2004
  • A light collecting probe named Multi-colored Integrated Receiving Optics (MICRO) is experimentally examined to verify its performance. For these purposes, the time-series signals of MICRO probe is compared with those of electrostatic probe and light-guided probe by monitoring, for example, such as OH radical chemiluminescence, CH radical band and droplet Mie scattering. In addition, the experiment was conducted by using laminar premixed Bunsen flame, turbulent premixed Bunsen flame and premixed spray flame, respectively. It was confirmed that the performance of MICRO probe was very useful and convenient to obtain the chemiluminescence signals from local regions in turbulent premixed Bunsen flame and premixed spray flame.

Characteristics of Premixed Flames in a Double Concentric Burner (이중 동축류 버너에서의 예혼합화염 특성에 관한 연구)

  • Gwon, Seong-Jun;Cha, Min-Seok;Choe, Man-Su;Jeong, Seok-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.12
    • /
    • pp.1662-1669
    • /
    • 2000
  • Various flame types are observed in a double concentric burner by varying equivalence ratio and flow rates in each tube. Observed flame types include bunsen-type flame, ring-shaped flame, outer lifted flame, inner lifted flame, and oscillatory lifted flame, The doman of existence of various flames is mapped with equivalence ratio and annular jet velocity. Each flame is investigated through direct photography and OH PLIF. As central air velocity increase, the blowout region is diminished and lifted oscillating flames are observed. Inner lifted flames are observed from bunsen flames or rich shaped flames by increasing central air velocity. For inner lifted flames, annular jet velocity, at flame liftoff decreases with increasing central air jet velocity. Axial velocity profile and temperature fie이 using LDV and CRS, respectively, for a typical inner lifted flame are also measured through which the role of tribrachial flame for stabilization in emphasized.

Experimental Study on the Effect of Flame Surface Area Fluctuation on the Heat Release Fluctuation in a Premixed Bunsen Flame (예혼합 분젠 화염에서의 화염 표면적 변동이 열발생 변동에 미치는 영향에 관한 실험적 연구)

  • Park, Jang-Hee;Lee, Dae-Keun;Shin, Hyun-Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.2
    • /
    • pp.197-202
    • /
    • 2010
  • A combustion chamber with a branch tube was built to investigate the characteristics of a spontaneous oscillating laminar premixed Bunsen flame. The flame behavior was observed, and the relation between the flame surface area and heat release rate was inspected. The equivalence ratio and mean velocity were fixed at 1.1 and 1.75 m/s, respectively. The amplitude of the pressure fluctuation in the combustion chamber was changed and the flame behavior was affected when the length ratio between the branch tube and combustion chamber (L:R) was varied. The $OH^*$, $CH^*$, and flame chemiluminescence had similar behavior qualitatively. There was linearity between the flame surface area and heat release rate.

An Experimental Study on Emission Characteristics of a Semi-Bunsen Type Gas Burner (가스보일러용 세미 분젠형 버어너의 배기 특성 연구)

  • Jurng, J.S.;Park, E.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.7 no.3
    • /
    • pp.353-358
    • /
    • 1995
  • The emission characteristics of a semi-Bunsen type burner for gas boilers were studied experimentally. The experimental results reveal that nitric oxide emission increases with fuel flow rate. It is linearly proportional to total fue flow rate at a small amount of fuel up to 0.4 liters per minute. It does not change significantly within the range of fuel flow rate from 0.4 to 1.2 liters per minute per nozzle and increases at large fuel flow rate. The carbon monoxide emission reveals to be dependent upon the fuel flow rate per each nozzle and the number of fuel injection nozzles. Diameter of an injection nozzle could have an effect on the emission characteristics of this type of burners. However, there is no marked change in the nitric oxide emission if the total fuel flow rate is same with different nozzle sizes.

  • PDF

A study on the laminar burning velocity according to the H2 content variation in a large range of equivalence ratio of syngas(H2/CO)-air premixed flames (넓은 당량비 구간에서 수소 함유량에 따른 합성가스(H2/CO)-공기 예혼합 화염의 층류연소속도에 관한 연구)

  • Jeong, Byeong-Gyu;Hwang, Cheol-Hong;Lee, Kee-Man
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.215-218
    • /
    • 2012
  • In this study, syngas laminar burning velocities with various hydrogen contents were studied using both experimental measurements and kinetic simulations. The laminar burning velocities were measured by the angle method of Bunsen flame configuration and the numerical calculations including burning velocities were made using CHEMKIN Package with USC-Mech II. A large range of syngas mixture compositions such as 10:90%, 25:75%, 50:50%, 75:25% and equivalence ratio from lean condition of 0.5 to rich condition of 5.0 have been conducted. The experimental results of burning velocity were in good agreement with previous other research data and numerical simulation. Also, it was shown that the experimental measurements of laminar burning velocity linearly increased with the increasing of $H_2$ content although the flame speed of hydrogen is faster about ten times than carbon monoxide. This phenomenon is attributed to the rapid production of the hydrogen related radicals such as H and OH at the early stage of combustion, which is confirmed the linear increasing of radical concentrations on kinetic simulation.

  • PDF

Treatment Technology of N2O by using Bunsen Premixed Flame (분젠 예혼합 화염을 활용한 아산화질소 처리기술에 관한 연구)

  • Jin, Si Young;Seo, Jaegeun;Kim, Heejae;Shin, Seung Hwan;Nam, Dong Hyun;Kim, Sung Min;Kim, Daehae;Yoon, Sung Hwan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.1
    • /
    • pp.153-160
    • /
    • 2021
  • Nitrous oxide is a global warming substance and is known as the main cause of the destruction of the ozone layer because its global warming effect is 310 times stronger than carbon dioxide, and it takes 120 years to decompose. Therefore, in this study, we investigated the characteristics of NOx emission from N2O reduction by thermal decomposition of N2O. Bunsen premixed flames were adopted as a heat source to form a high-temperature flow field, and the experimental variables were nozzle exit velocity, co-axial velocity, and N2O dilution rate. NO production rates increased with increasing N2O dilution rates, regardless of nozzle exit velocities and co-axial flow rates. For N2O, large quantities were emitted from a stable premixed flame with suppressed combustion instability (Kelvin Helmholtz instability) because the thermal decomposition time is not sufficient with the relatively short residence time of N2O near the flame surface. Thus, to improve the reduction efficiency of N2O, it is considered effective to increase the residence time of N2O by selecting the nozzle exit velocities, where K-H instability is generated and formed a flow structure of toroidal vortex near the flame surface.