• 제목/요약/키워드: Bunsen Flame

검색결과 24건 처리시간 0.018초

SNG/공기 화염의 층류 연소속도 측정 - 분젠과 구형 화염법 비교 - (Laminar Burning Velocity Measurement of SNG/Air Flames - A Comparison of Bunsen and Spherical Flame Method -)

  • 김동찬;이기만
    • 한국수소및신에너지학회논문집
    • /
    • 제27권6호
    • /
    • pp.737-746
    • /
    • 2016
  • This article describes a comparison on laminar burning velocity measured by Bunsen and spherical flame methods of synthetic natural gas (SNG) with various composition of hydrogen. In this study, the laminar burning velocity measurements were employed by Bunsen burner and cylindrical constant combustor at which flame images were captured by Schlieren system. These results were also compared with numerical based on CHEMKIN package with GRI 3.0, USC-II and UC Sandiego mechanism. In case of spherical flames, the suitable flame radius range and theoretical models were verified using the well-known previous results in methane/air flames. As an experimental condition, hydrogen content of SNG was adjusted 0% to 11%. Equivalence ratios of Bunsen flames were adjusted from 0.8 to 1.6. On the other hand, those of spherical flames were adjusted from 0.6 to 1.4, relatively. From results of this study, the both laminar burning velocities measured in Bunsen and spherical flame methods were resulted in similar tendency. As the hydrogen content increased, the laminar burning velocity also increased collectively. Laminar burning velocity of measured SNG-air flames was best coincided with GRI 3.0 mechanism by comparison of reaction mechanisms.

분젠 버너법을 이용한 합성가스(H2/CO)/공기 예혼합화염의 층류 연소속도 측정 (Measurement of Laminar Flame Speed of Syngas(H2/CO)/Air Premixed Flame using the Bunsen Burner Method)

  • 정병규;이기만
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2012년도 제44회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.181-183
    • /
    • 2012
  • Syngas laminar flame speed measurements were carried out at atmospheric pressure and ambient temperature using the Bunsen flame configuration with nozzle burner as a fundamental study on flame stability of syngas. Representative syngas mixture compositions ($H_2:CO$) such as 25:75%, 50:50% and 70:25% and equivalence ratios from 0.5 to 1.4 were investigated. The measured laminar flame speeds were in good agreement with the previous numerical data as well as experimental data available in the literatures over a wide range of equivalence ratio tested. It was reconfirmed that the laminar flame speed gradually increased with the increase in $H_2$ content in a fuel mixture. In particular, the significant increasing rate of flame speed was observed with the increase in equivalence ratio.

  • PDF

Bunsen Buner 난류 예혼합 화염장의 해석 (Prediction of Turbulent Premixed Flamefield in Bunsen Burner)

  • 조지호;김후중;김용모
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 제26회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.195-199
    • /
    • 2003
  • The stoichiometric methan/air premixed turbulent flames at the axisymmetric Bunsen burner situation are numerically investigated. To account for the chemistry-turbulence interaction in the turbulent premixed flames, the steady laminar flamelet library method has been adopted. The flame front is tracked by using the Level-Set Approach. Turbulence is represented by the ${\kappa}-{\varepsilon}$ modeling with a Pope's correction. The detailed comparison between prediction and measurement has made for the flame field in terms of velocity, turbulent kinetic energy, and normarlized temperature.

  • PDF

광학식 수광 프로브의 실험적 성능평가 (Experimental Performance Evaluation of Optical Receiving Probe)

  • 양영준
    • 한국산업융합학회 논문집
    • /
    • 제7권3호
    • /
    • pp.265-271
    • /
    • 2004
  • A light collecting probe named Multi-colored Integrated Receiving Optics (MICRO) is experimentally examined to verify its performance. For these purposes, the time-series signals of MICRO probe is compared with those of electro-static probe and light-guided probe by monitoring, for example. such as OH radical chemiluminescence. CH radical band and droplet Mie scattering In addition, the experiment was conducted by using laminar premixed Bunsen flame, turbulent premixed Bunsen flame and premixed spray flame, respectively. It was confirmed that the performance of MICRO probe was very useful and convenient to obtain the chemiluminescence signals from local regions in turbulent premixed Bunsen flame and premixed spray flame.

  • PDF

연소장에서의 광학식 수광프로브의 적용 (Application of Optical Receiving Probe in Combustion Field)

  • 양영준
    • 센서학회지
    • /
    • 제13권5호
    • /
    • pp.335-341
    • /
    • 2004
  • A light collecting probe named Multi-colored Integrated Receiving Optics (MICRO) is experimentally examined to verify its performance. For these purposes, the time-series signals of MICRO probe is compared with those of electrostatic probe and light-guided probe by monitoring, for example, such as OH radical chemiluminescence, CH radical band and droplet Mie scattering. In addition, the experiment was conducted by using laminar premixed Bunsen flame, turbulent premixed Bunsen flame and premixed spray flame, respectively. It was confirmed that the performance of MICRO probe was very useful and convenient to obtain the chemiluminescence signals from local regions in turbulent premixed Bunsen flame and premixed spray flame.

이중 동축류 버너에서의 예혼합화염 특성에 관한 연구 (Characteristics of Premixed Flames in a Double Concentric Burner)

  • 권성준;차민석;최만수;정석호
    • 대한기계학회논문집B
    • /
    • 제24권12호
    • /
    • pp.1662-1669
    • /
    • 2000
  • Various flame types are observed in a double concentric burner by varying equivalence ratio and flow rates in each tube. Observed flame types include bunsen-type flame, ring-shaped flame, outer lifted flame, inner lifted flame, and oscillatory lifted flame, The doman of existence of various flames is mapped with equivalence ratio and annular jet velocity. Each flame is investigated through direct photography and OH PLIF. As central air velocity increase, the blowout region is diminished and lifted oscillating flames are observed. Inner lifted flames are observed from bunsen flames or rich shaped flames by increasing central air velocity. For inner lifted flames, annular jet velocity, at flame liftoff decreases with increasing central air jet velocity. Axial velocity profile and temperature fie이 using LDV and CRS, respectively, for a typical inner lifted flame are also measured through which the role of tribrachial flame for stabilization in emphasized.

예혼합 분젠 화염에서의 화염 표면적 변동이 열발생 변동에 미치는 영향에 관한 실험적 연구 (Experimental Study on the Effect of Flame Surface Area Fluctuation on the Heat Release Fluctuation in a Premixed Bunsen Flame)

  • 박장희;이대근;신현동
    • 대한기계학회논문집B
    • /
    • 제34권2호
    • /
    • pp.197-202
    • /
    • 2010
  • 자발 진동하는 층류 예혼합 분젠 화염을 관찰하기 위하여 분기관을 가진 연소기를 제작 하였다. 특히, 조건에 따른 화염 거동을 살펴봤으며, 화염 표면적과 열발생 변동의 관계에 대하여 고찰하였다. 본 연구에서 사용된 당량비는 1.1 이고, 노즐 출구 평균 유속은 1.75 m/sec 이다. 연소 챔버와 분기관의 길이비(L.R.)는 연소기 내 압력 변동에 영향을 미치며, 결과적으로 화염 거동 특성이 달라짐을 관찰하였다. 또한, 간섭 필터의 유무에 따른 $OH^*$, $CH^*$, 그리고 화염 자발광은 정성적으로 유사한 거동을 나타냈으며, 자발 진동하는 층류 예혼합 분젠 화염의 화염 표면적 변동과 열발생 변동은 선형적인 관계를 가짐을 확인하였다.

가스보일러용 세미 분젠형 버어너의 배기 특성 연구 (An Experimental Study on Emission Characteristics of a Semi-Bunsen Type Gas Burner)

  • 정종수;박은성
    • 설비공학논문집
    • /
    • 제7권3호
    • /
    • pp.353-358
    • /
    • 1995
  • The emission characteristics of a semi-Bunsen type burner for gas boilers were studied experimentally. The experimental results reveal that nitric oxide emission increases with fuel flow rate. It is linearly proportional to total fue flow rate at a small amount of fuel up to 0.4 liters per minute. It does not change significantly within the range of fuel flow rate from 0.4 to 1.2 liters per minute per nozzle and increases at large fuel flow rate. The carbon monoxide emission reveals to be dependent upon the fuel flow rate per each nozzle and the number of fuel injection nozzles. Diameter of an injection nozzle could have an effect on the emission characteristics of this type of burners. However, there is no marked change in the nitric oxide emission if the total fuel flow rate is same with different nozzle sizes.

  • PDF

넓은 당량비 구간에서 수소 함유량에 따른 합성가스(H2/CO)-공기 예혼합 화염의 층류연소속도에 관한 연구 (A study on the laminar burning velocity according to the H2 content variation in a large range of equivalence ratio of syngas(H2/CO)-air premixed flames)

  • 정병규;황철홍;이기만
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2012년도 제45회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.215-218
    • /
    • 2012
  • In this study, syngas laminar burning velocities with various hydrogen contents were studied using both experimental measurements and kinetic simulations. The laminar burning velocities were measured by the angle method of Bunsen flame configuration and the numerical calculations including burning velocities were made using CHEMKIN Package with USC-Mech II. A large range of syngas mixture compositions such as 10:90%, 25:75%, 50:50%, 75:25% and equivalence ratio from lean condition of 0.5 to rich condition of 5.0 have been conducted. The experimental results of burning velocity were in good agreement with previous other research data and numerical simulation. Also, it was shown that the experimental measurements of laminar burning velocity linearly increased with the increasing of $H_2$ content although the flame speed of hydrogen is faster about ten times than carbon monoxide. This phenomenon is attributed to the rapid production of the hydrogen related radicals such as H and OH at the early stage of combustion, which is confirmed the linear increasing of radical concentrations on kinetic simulation.

  • PDF

분젠 예혼합 화염을 활용한 아산화질소 처리기술에 관한 연구 (Treatment Technology of N2O by using Bunsen Premixed Flame)

  • 진시영;서재근;김희재;신승환;남동현;김성민;김대해;윤성환
    • 해양환경안전학회지
    • /
    • 제27권1호
    • /
    • pp.153-160
    • /
    • 2021
  • 아산화질소(Nitrous oxide, N2O)는 지구온난화 물질의 하나로 이산화탄소에 비해 지구온난화효과가 310배 강하고 분해하는데 120년이 소요되기 때문에 오존층 파괴에 주범으로 알려져 있다. 따라서 본 연구에서는 N2O를 저감하기 위해 고온 열분해 기술을 적용하여 N2O 저감 공정에서 발생하는 NOx 배출 특성에 대해 조사하였다. 고온 유동장을 형성하기 위해 동축 분젠 예혼합 화염을 열원으로 채택하였으며 실험 변수로는 노즐출구속도, 동축류 속도 및 N2O 희석률로 설정하였다. 실험 결과, NO 생성률은 노즐출구속도 및 동축류 유량에 관계없이 N2O 희석률이 증가함에 따라 증가하였다. N2O의 경우에는 연소 불안정성(Kelvin Helmholtz 불안정)이 억제된 안정된 예혼합 화염에서 다량으로 배출되었는데, 이는 화염 면 부근에서 감소된 N2O의 체류시간으로 인해 열분해 시간이 충분하지 않기 때문인 것으로 사료된다. 따라서 N2O의 저감 효율을 증진시키기 위해서는 K-H 불안정성이 발생되는 노즐출구속도를 선정하여 화염 면 부근에서 발생되는 와류(toroidal vortex) 형태의 유동 구조를 형성하는 것이 N2O의 체류시간을 증가시키는데 효과적인 것으로 판단된다.