• Title/Summary/Keyword: Bunker-B oil

Search Result 9, Processing Time 0.03 seconds

The Biodegradation Characteristics of the Mixtures of Bunker-A, B Oils with Dispersants in the Seawater

  • BAEK Joong-Soo;KIM Gwang-Su;CHO Eun-il
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.29 no.6
    • /
    • pp.787-796
    • /
    • 1996
  • The biodegradation experiment, the TOD analysis and the element analysis for dispersant, Bunker-A oil and Bunker-B oil were conducted to study the biodegradation characteristics of a mixture of Bunker-A oil with dispersant and a mixture of Bunker-B oil with dispersant in the seawater. The results of biodegradation experiment showed 1mg of dispersant to be equivalent to 0.26 mg of $BOD_5$ and to 0.60 mg of $BOD_{20}$ in the natural seawater. The results of TOD analysis showed each 1 mg of dispersant, Bunker-A oil and Bunker-B oil to be equivalent to 2.37 mg, 2.94 mg and 2.74 mg of TOD, respectively. The results of element analysis showed carbon, hydrogen, nitrogen and phosphorus contents of dispersant to be $82.1\%,\;13.8\%,\;1.8\%\;and\;2.2\%$, respectively. Carbon and hydrogen contents of Bunker-A oil were found to be $73.3\%\;and\;13.5\%$, respectively, and carbon, hydrogen and nitrogen contents of Bunker-B oil to be $80.4\%,\;12.3\%\;and\;0.7\%$, respectively. Accordingly, the detection of nitrogen and phosphorus in dispersant shows that dispersants should be used with caution in coastal waters, with relation to eutrophication. The biodegradability of dispersant expressed as the ratio of $BOD_5/TOD$ was found to be $11.0\%$. As the mix ratios of dispersant to Bunker-A oil (3 mg/l) and a mixture of Bunker-B oil (3mg/l) were changed from 1 : 10 to 5 : 10, the biodegradabilities of a mixture of Bunker-A oil with dispersant and Bunker-B oil with dispersant increased from $2.1\%\;to\;7.2\%$ and from $1.0\%\;to\;4.4\%$, respectively. Accordingly, the dispersant belongs to the organic matter group of middle-biodegradability while mixtures in the mix ratio range of $1:10\~5:10$ belong to the organic matter group of low-biodegradability. The deoxygenation rate constant $(K_1)$ and ultimate biochemical oxygen demand $(L_0)$ obtained from the biodegradation experiment and Thomas slope method were found to be 0.125/day and 2.487 mg/l for dispersant (4 mg/l), respectively. $K_1\;and\;L_0$, were found to be $0.079\~0.131/day$ and $0.318\~2.052\;mg/l$ for a mixture of Bunker-A oil with dispersant and to be $0.106\~0.371/day$ and $0.262\~1.106\;mg/l$ for a mixture of Bunker-B oil with dispersant, respectively, having $1:10\~5:10$ mix ratios of dispersant to Bunker-A oil and Bunker-B oil. The ultimate biochemical oxygen demands of the mixtures increased as the mix ratio of dispersant to Bunker-A, B oils changed from 1 : 10 to 5 : 10. This suggests that the more dispersants are applied to the sea for the cleanup of Bunker-A oil or Bunker-B oil, the more decreases the dissolved oxygen level in the seawater.

  • PDF

Preparation of Oil dispersants using polyoxyethylene Monooleate and Oleyether and its Effect on dispersing efficiency to Bunker B Oil (Polyoxyethylene monooleate 및 oleyther계 유분산제의 제조와 Bunker B유의 분산효율에 미치는 영향)

  • Yeom, Guy-Seol;Kang, Doo-Whan
    • Journal of the Korean Applied Science and Technology
    • /
    • v.12 no.1
    • /
    • pp.59-67
    • /
    • 1995
  • Oil dispersants using polyoxyethylene monooleate, polyoxyethylene oleylether, and poly(oxypropylene-oxyethylene)glycol block copolymer were prepared, and oil dispersant efficiency was measured using vertical shaking flask method to 4 kinds of Bunker B oil with different physical properties by appling the prepared dispersants. Although the dispersant efficiency was differed according to the differences of physical properties of Bunker B oil, the dispersant prepared using polyoxyethylene oleylether was the most effective to disperse the oil into water. The impurities like surfur contained in sample oil have to be removed by filteration to obtain the correct degree of absorption using UV spectrophotometer.

Oil Gelling Agents made from Polyurethane by One-Shot Method (One-Shot법을 이용한 폴리우레탄계 유겔화제의 특성)

  • Kim, Dongsung;Kim, Wonho
    • Journal of Adhesion and Interface
    • /
    • v.3 no.2
    • /
    • pp.1-8
    • /
    • 2002
  • Polyurethane NCO prepolymers were synthesized with the polyols such as PTMG, GP and the isocyanate such as TDI at $40^{\circ}C$ for 8.5 minutes. As average molecular weights (${\bar{M_n}}$: 1000, 2000, 3000, 4000) of PTMG, and GP were decreased from 4000 to 1000, ratio of oil gelation increased from 298%, to 440%, for Bunker B. When oil and water were emulsified, the ratio of gelation was increased approximately two times. Ratio of gelation for emulsive Bunker B was increased from 402% to 910%, for PTMG1000 and increased from 440%, W 958% for GPI1000. Ratio of oil gelation for emulsive Bunk C which has higher viscosity than Bunker B was measured w 923% for PTMG1000 made with chain extender, i.e. EG, and measured to 1098% for GP1000. The gel made from GP which has three functional group showed soft and strong characteristic, as a result, it can be removed easily from oil spilled ocean.

  • PDF

A Study on the Evaluation of Oil-adsorption Characteristics and Policy Guideline of Oil Snare (오일스네어에 대한 오일 흡착기준 정립 및 고시방향 연구)

  • Jin, Y.M.;You, J.Y.;Choi, S.S.;Joo, A.R.;Lee, J.H.;Lee, Soon-Hong
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.6
    • /
    • pp.22-28
    • /
    • 2019
  • In South Korea, the enact of Korean Coast Guard Act-1 manages physical and chemical oil-dispersants. Oil snare, which is made of polypropylene, is newly added to the aforementioned act, and it has advantage on the ease of recovery compare to other adsorbents. This study synthesized bunker B-oil with diesel-oil and bunker C-oil to perform an adsorption test based on three samples which were manufactured in South Korea. As a result, adsorption test revealed 5.2 g/g more adsorption than the previous results from the act. Additional toluene test revealed that all the samples satisfied 90.0%, however coloured samples could release its pigment on the marine environment. Thus, colorless samples are recommended on the risk management of marine accidents. The study on the basic direction of the calculation of the test items and the standard value for the quality control of the oil snare was also carried out.

Preparation and Properties of Mixed Solvent Type Low Toxic Concentrated Oil Dispersant on Oil (혼합 용매계 저독성 농축형 유분산제의 제조와 광유에 대한 분산효율 특성)

  • Yeom, Kuy-Seol;Kang, Doo-Whan;Kim, Won-Ki
    • Journal of the Korean Applied Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.29-38
    • /
    • 1997
  • Low toxic concentrated oil dispersant using n-Paraffin and Di(ethylene glycol)mono butylether mixed solvent was prepared, and tested by oil dispersant performance test method, and oil dispersant efficiency was measured using vertical shaking method to 3 kinds of Crude oil, Bunker oil and W/O emulsions with different physical properties by appling the prepared dispersant. Although toxicity test was performed with Flat fish and Rock fish by appling the mixed oils emulsified using prepared oil dispersant, couldn't find the toxicity to them. Concentrated oil dispersant prepared has a good dispersion efficiency of 97.2% after 0.5min settling time and 28.3% after 10min settling time to Bunker B oil with 10% water solution. Especially, the concentrated oil dispersant showing the low toxicity to Oryzias Latipes(24hr, TLm) was 54,000 ppm and to Brine Shrimp Artemia(24hr, TLm) was 51,000ppm, and also, it was completely biodegradated to 99.1% after $7{\sim}8$days.

A Study on Characteristics of Emulsified Fuel (유화연료의 특성에 관한 연구)

  • Jung, J.S.;Kim, J.J.;Lee, K.B.
    • 한국연소학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.105-110
    • /
    • 1999
  • The elementary experiment was performed to develop the emulsified fuel production system using pressure injection nozzle in this study. The stabilities and characteristics of emulsified fuel which is produced through direct spray of water via pressure injection nozzle into oil are examined. To understand performance of emulsion production, stabilities of emulsified fuel which is made by adding water to the mixed fuel of Bunker-C and 10 $^{\sim}$ 50 vol% of heating oil were investigated. According to volume ratios of surfactant in heating oil the stability and SMDs were measured

  • PDF

An Experimental Study on Vaporization and Combustion Behavior for Single Droplets of Water-in-Oil Emulsified Fuels (유화연료 단일액적의 증발 및 연소거동에 관한 실험적 연구)

  • Park, M.C.;Kim, B.S.;Oh, S.H.
    • Journal of the Korean Society of Combustion
    • /
    • v.5 no.1
    • /
    • pp.81-89
    • /
    • 2000
  • An experimental study has been carried on single fuel droplets of water-in-light oil emulsions in an electric furnace to elucidate the dominant factor for the occurrence of micro-explosions. The tests were carried out by changing the following four parameters; the surfactant, the ratio of water to light oil, ambient temperature in electric furnace, and four kinds of fuels having different viscosity(light-oil, kerosene, iso-octane, bunker fuel). The result shows that micro-explosion phenomena is dominated without surfactant and below 30% of water content. Explosion-time is affected by ambient temperature and viscosity of used fuel.

  • PDF

An experimental study for the effect of rotational direction on the recovery rate of spilled oil using a belt skimmer (벨트식 유회수기의 회전방향이 유회수율에 미치는 영향에 관한 실험적 연구)

  • Song, Dong-Eop;Yun, Gyeong-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.5
    • /
    • pp.679-690
    • /
    • 1997
  • Oil spill over the sea and the river become a serious problem in these days. Two different approaches are used to clean up the spilled oil by means of chemical dispersion and mechanical devices. If it is possible, removing spilled oil using mechanical devices are highly desirable in order not to worry about the secondary contamination from chemical treatment. One of the major unsolved problems using mechanical devices has been the recovery of highly viscous oil spill. So, the systematic experimental data for treating very viscous oil are still wanting. In the present study a series of experiments were carried out to study the effect of the rotational direction of the belt skimmer on the rate of oil recovery using Bunker C oil. Three different situations, namely, upward, downward and up-and-downward pickup rate have been investigated for variable belt speed. The results showed that the rate of oil recovery for downward pickup was much higher than that for upward pickup. The major mechanism to recover the oil using a belt skimmer has been confirmed that oil sticks to the belt surface while moving to the water rather than moving upward. For the removal of spilled oil the optimal belt speed under the present experimental conditions was found to be about 200 ~ 270 mm/s just before the starvation started. The present experimental results would provide the basis for understanding the performance characteristics and physics of various types of skimmers.

Environment Analysis of Kwangyang Bay after the Keumdong Oil Spill

  • Park, Yong-Chul;Han, Myung-Woo;Kim, Sung-Jun;Chung, Kyung-Ho;Son, Seung-Kyu;Chung, Jin-Won
    • Journal of the korean society of oceanography
    • /
    • v.33 no.4
    • /
    • pp.168-177
    • /
    • 1998
  • Five and a half months after the Keumdong oil spill accident on the 21$^{st}$ of September 1993, 34 seawater samples and 94 sediment samples were collected from Kwangyang Bay and Namhaedo area to assess its environmental impacts. Hydrocarbon concentration in the seawater ranged from 0.8 to 9.2 ${\mu}$g/1 with an average of 3.3 ${\mu}$g/1. This average value was nearly the same as the value(3.7 ${\mu}$g/1) before the oil spill accident. This suggests that by the early March of 1994 majority of the coastal water in the study area restored to its background hydrocarbon concentration before the oil spill accident. Nutrients, heavy metals and other general environmental parameters of the seawater did not show any aggravated seawater quality compared with the previous records. From the regression analysis of time-course observation of hydrocarbon in the seawater, except the sediment environment, the effect of oil spill on the water column was estimated to last at least 4 months in the study area after the oil spill accident. In the shoreline sediments, oil deposits were, however, still found at the high water marks at several stations, and very high values were found in the west of Namhaedo, ranging from 3.7 to 40.1 mg/g of wet sediment. Gas chromatography of these samples showed a very distinct Bunker C chromatogram identical to the Keumdong oil spill. Hydrocarbons in the subtidal bottom sediments in the study area and the reference stations (YB and CB) ranged from 0.45 to 18.08 ${\mu}$g/g of wet sediment with an average of 3.09 ${\mu}$g/g. West of Namhaedo (Stations Bl2-B33) generally showed much higher values than inner Kwangyang Bay and in Chinju Bay. Chinju Bay generally showed the lowest value among the study area. Subtidal bottom sediments in inner Kwangyang Bay and Chinju Bay seemed to be less affected than west of Namhaedo. Heavy metal concentrations in the sediment were relatively higher in the Kwangyang Bay than in the Chinju Bay. However, metal concentrations in the study area were in general comparable to the reference areas.

  • PDF