• 제목/요약/키워드: Bunker C oil

검색결과 71건 처리시간 0.018초

폐윤활유 불법혼입 C중유 물성 분석 (Analysis of Illegally Mixed Used Lube Oil in Bunker C)

  • 임영관;이재민;김완식;이정민
    • Tribology and Lubricants
    • /
    • 제34권5호
    • /
    • pp.191-196
    • /
    • 2018
  • Bunker C is used in heavy-lift ships, furnaces, and boilers for generating heat, and power. Bunker C has only four regulations for quality standards and is rarely inspected in Korea. For these reasons, other oils such as used lubricant oil are commonly blended with Bunker C. This illegal mixture of fuel can damage the boilers, engines and affect the environment adversely. In this study, we investigate the fuel properties and perform atomic analysis of illegal Bunker C blended with used lube oil. The test results show that higher quantities of used lube oil in Bunker C have higher flash points, total acid numbers, copper corruption, solid contamination, and metal components. Further, increasing quantities of used lube oil in Bunker C cause lower viscosity, sulfur, and V content. However, adequate sample (approximately 1 L) is needed to evaluate presence of adulterants in Bunker C, we attempted the SIMDIST analysis. In the SIMDIST chromatogram, the used engine oils are detected for longer retention times than Bunker C owing to the high boiling point. We also quantitatively analyzed the lube oil content using SIMDIST.

황산염 환원세균에 의한 Dibenzothiophene, 원유 및 Bunker C 유의 탈황 (Degradation of Dibenzothiophene, and Desulfurization of Crude Oil and Bunker C Oil by Sulfate Reducing Bacteria)

  • 김해영;김태성;김병홍
    • 한국미생물·생명공학회지
    • /
    • 제18권1호
    • /
    • pp.31-34
    • /
    • 1990
  • 중온성과 고온성인 황산염 환원세균들을 사용하여 dibenzothiophene, 원유 및 Bunker C 유의 탈황실험을 하여 중온성인 분리균주 Desulfovibrio desulfuricans M6는 dibenzothiophene, crude oil를 42, 17 까지 탈황시켰으며, 고온성은 Desulfovibrio thermophilus에서 dibenzothiphene Bunker C 유를 각각 68, 33 탈화시켜, 황산염 환원세균에 의한 석유의 탈황 가능성을 보였다. 또한 Desulfovibrio 속과 Desulfotomaculum 속의 탈황 능력의 차이로부터 탈황기작이 hydrogenase와 환원력 원인 수소가 관련이 있다는 것을 알았다.

  • PDF

해수중에서 유처리제 및 유처리제/Bunker-C유 혼합물의 생분해도와 용존산소소비에 관한 연구(II) - 유처리제/Bunker-C유 혼합물의 생분해도와 용존산소소비 - (Study on the Biodegradability of Dispersants and Dispersant/Bunker-C Oil Mixtures and the Dissolved Oxygen Consumption in the Seawater(II) - The Biodegradability of Dispersant/Bunker-C Oil Mixtures and the Dissolved Oxygen Consumption in the Seawater -)

  • 김광수;박청길;김종구
    • 한국수산과학회지
    • /
    • 제26권6호
    • /
    • pp.519-528
    • /
    • 1993
  • 해수중에서 유처리제에 의해 유화${\cdot}$분산된 Bunker-C유의 생분해도와 이로 인해 나타나는 용존산소소비를 연구할 목적으로 국내에서 시판 중인 유처리제 및 국내 연안에 있어 유류오염사고의 주종을 이루고 있는 Bunker-C유에 대한 TOD분석과 원소분석을 행하고, 또한 Bunker-C유/유처리제 혼합물에 대해 천연해수를 이용한 생분해 실험을 행한 결과를 요약하면 다음과 같다. 1. 1mg의 Bunker-C유는 3.16mg의 TOD를 나타내는 반면에 1mg의 유처리제는 2.80mg의 TOD값을 나타내었다. 2. Bunker-C유는 $87.3\%$의 탄소와 $11.5\%$의 수소를 함유하였으며, 유처리제는 $76.5\%$의 탄소와 $12.2\%$의 수소를 함유하였다. Bunker-C유와 유처리제 중 어느 시료에서도 질소는 검출되지 않았다. 3. 천연해수 중에서 일정량의 Bunker-C유(4mg/l)에 대하여 유처리제를 $10:1{\sim}10:5$의 혼합비율로 첨가한 Bunker-C유/유처리제 혼합물에 관해서 정리하면, 혼합물의 $BOD_5$$0.34{\sim}2.06mg/l$였고 $BOD_{20}$$1.05{\sim}5.47mg/l$였다. 또한 혼합비율이 증가함에 따라 혼합물의 BOD는 증가하였다. 혼합물은 생분해도($BOD_5$/TOD)가 $3{\sim}11\%$로서 저율 분해군에 속하였다. 또한 혼합비율이 10:1에서 10:5로 증가함에 따라 혼합물의 생분해도는 $3\%$에서 $11\%$로 증가하였다. 혼합물의 탈산소계수($K_1$)는 $0.072{\sim}0.097/day$였으며, 혼합물의 최종산소요구량($L_o$)은 $1.113mg/l{\sim}6.746mg/l$로서 혼합비율이 증가함에 따라 최종산소요구량도 증가하였다.

  • PDF

해양세균 Achromobacter sp. M-1220균주에 의한 Bunker-C 유의 유화 (Emulsification of Bunker-C Oil by a Marine Bacterium Achromobacter sp. M-1220)

  • 박중연;박인식;서근학;홍용기
    • 한국미생물·생명공학회지
    • /
    • 제16권5호
    • /
    • pp.384-388
    • /
    • 1988
  • 우리나라 연근 해역의 유류 오염물질중 주종을 이루는 고황 함유 Bunker-C유를 대상으로 이를 유화 분산 처리시키는 해양세균 Achromobacter sp. M-1220 균주를 분리하여 그 유화분산에 미치는 영향을 조사하였다. 우선 Bunker-C유에 유도된 세포를 사용할 경우 생균수가 최고 1000배까지, 유탁도는 대략 10정도까지 증가되나, 적응되지 않은 세포를 사용할 경우는 5일 정도의 적응기를 거친 다음 유화를 시작하였으며 pH 완충제를 첨가하지 않으면 적응된 세포나 적응되지 않은 세포 모두 유탁도의 변화를 나타내지 못하였다. 유화능력은 염분농도 3%, 온도 18$^{\circ}C$, pH 7.5 부근에서 가장 높게 나타났으며 또한 분리균의 유화처리에 있어서 해수배지에 질소원과 인산원의 첨가가 필수적으로 요구되고 기질 유류의 양은 7.5g/$\ell$까지 잘 유화 분산시켰다. 그리고 고황함량의 Bunker-C유와 원유를 잘 유화처리시킬 수 있었으며 석유계 화합물중에서 n-hexadecane, n-paraffin, benzene 등의 자화능력도 보여주었다.

  • PDF

C 중유의 황 함유량에 따른 CO2 배출 특성 (CO2 Emission Characteristics of Bunker C Fuel Oil by Sulfur Contents)

  • 임완규;도진우;황인하;하종한;이상섭
    • 한국대기환경학회지
    • /
    • 제31권4호
    • /
    • pp.368-377
    • /
    • 2015
  • Bunker C fuel oil is a high-viscosity oil obtained from petroleum distillation as a residue. The sulfur content of bunker C fuel oil is limited to 4.0% or even lower to protect the environment. Because bunker C fuel oil is burned in a furnace or boiler for the generation of heat or used in an engine for the generation of power, carbon dioxide is emitted as a result of combustion. The objective of this study is to investigate $CO_2$ emission characteristics of bunker C fuel oil by sulfur contents. Calorific values and carbon contents of the fuels were measured using the oxygen bomb calorimeter method and the CHN elemental analysis method, respectively. Sulfur and hydrogen contents, which were used to calculate the net calorific value, were also measured and then net calorific values and $CO_2$ emission factors were determined. The results showed that hydrogen content increases and carbon content decreases by reducing sulfur contents for bunker C fuel oil with sulfur contents less than 1.0%. For sulfur contents between 1.0% and 4.0%, carbon content increases as sulfur content decreases but there is no evident variation in hydrogen content. Net calorific value increases by reducing sulfur contents. $CO_2$ emission factor, which is calculated by dividing carbon content by net calorific value, decreases as sulfur content decreases for bunker C fuel oil with sulfur contents less than 1.0% but it showed relatively constant values for sulfur contents between 1.0% and 4.0%.

Biodegradation of Bunker-A Oil by Acinetobacter sp. EL-081K

  • Kim, Hee-Goo;Park, Geun-Tae;Son, Hong-Joo;Lee, Sang-Joon
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • 제4권4호
    • /
    • pp.227-230
    • /
    • 2000
  • Bunker-A oil-degrading microorganisms were isolated from a marine environment using an enrichment culture technique. The isolated strain EL-081K was identified as the genus Acinetobacter based on the results of morphological, culture, and biochemical tests. The optimal temperature and initial pH for bunker-A oil degradation were $25^{\circ}C$ and 7.0, respectively, including aeration. The optimal medium composition for the degradation of bunker-A oil by Acinetobacter sp. EL_O81K was 10 ml/l bunker-A oil as the carbon source and 0.1% (NH$_4$)$_2$SO$_4$as the nitrogen source. Under the above conditions, the biodegradability of bunker-A oil was 38% after 96 hours of incubation. The addition of detergent did not increase the bunker-A oil degradation.

  • PDF

여수주변해역에서 분리한 유류분해세균 Pseudomonas sp. BCK-1의 특성 (Characterization of Oil Degrading Bacterium Pseudomonas sp. BCK-1 Isolated from the Coastal Water of Yosu, Korea)

  • 구헌서
    • 한국수산과학회지
    • /
    • 제34권2호
    • /
    • pp.145-150
    • /
    • 2001
  • 한국 남해안 유류 오염지역인 전남 여수시 소리도 지역 해수로부터 유류 분해능이 우수한 균주를 선별하여 동정한 결과 Pseudomonas sp.로 동정되었으며, Pseudomonas sp. BCK-1으로 명명하였다. 균성장에 대한 최적배양온도, pH, NaCl 농도는 각각 $30^{\circ}C$, 7.0, $3\%$(w/v)였으며, $2\%$ (w/v) arabian light crude oil과 bunker C oil을 기질로 72시간 및 168시간 배양한 결과 arabian light crude oil는 $92\%$ (w/w), bunker, C oil은 $72\%$ (w/w)가 각각 생분해되었다.

  • PDF

Bunkder C유 회분의 물리적, 화학적, 전기적 특성분석 (A Characteristic Analysis of Physical, Chemical and Electrical Property for Bunker C Fly Ash)

  • 이재근;이정언;안영철
    • 한국에너지공학회:학술대회논문집
    • /
    • 한국에너지공학회 1996년도 춘계학술발표회 초록집
    • /
    • pp.88-96
    • /
    • 1996
  • The characteristic analysis of fly ash generated from a fired power plant using bunker-C oil has been investigated. Ash size distribution by an optical microscopy with image processing technique, morphological shape by a scanning electron microscope(SEM) and microscope, chemical composition by the inductively coupled plasma emission spectrometry(ICP), and resistivity measurement as a function of temperature and moisture content by the resistivity meter are performed. A study of physical, chemical and electrical characteristics of bunker-C fly ash plays an important role of improving the performance of an electrostatic precipitator and protecting air pollution. The samples of bunker-C fly ash for analysis were collected from the electrostatic precipitator hopper of Ulsan Power Plant Unit 1 and Pusan Power Plant Unit 1. Mass median diameter(MMD) of bunker-C fly ash was measured 12.7${\mu}{\textrm}{m}$, while MMD of fly ash generated from the mixture of bunker-C oil(40%) and domestic anthracitic coal(60%) was 25.7${\mu}{\textrm}{m}$. The morphological structure of bunker-C fly ash consisted of fine particles of non-spherical shape. The primary chemical components of bunker-C fly ash were composed of SiO2(2.36%), Al2O3(4.91%), Fe2O3(14.33%) and C(11.84%). Resistivity of bunker-C fly ash was found to be increased with increasing temperature at the range of 100~15$0^{\circ}C$ and was measured 103~104 ohm-cm.

  • PDF

One-Shot법을 이용한 폴리우레탄계 유겔화제의 특성 (Oil Gelling Agents made from Polyurethane by One-Shot Method)

  • 김동성;김원호
    • 접착 및 계면
    • /
    • 제3권2호
    • /
    • pp.1-8
    • /
    • 2002
  • 물과의 발포반응에 의해 유츌유를 겔화할 수 있는 폴리우레탄 NCO prepolymer를 제조하기 위하여 폴리올(PTMG 및 GP)과 이소시아네이트(TDI)를 사용하여 NCO prepolymer를 합성하였다. 폴리올 각각의 분자량에 따라 합성한 NCO prepolymer를 이용하여 초기 유출유와 에멀젼된 유출유 그리고 유출유의 종류에 따라 유겔화율을 측정하였다. Bunker B 초기 유출유에 대하여 3관능성 폴리오인 GP1000의 경우 440%의 유겔화율은 나타내었으며, 유출유와 해수가 에멀젼(emulsion)된 상태에서는 2배 정도가 증가한 958%의 유겔화율을 나타내었다. 또한 Bunker B에 비해 점도가 높은 Bunker C의 에멀젼된 상태에서는 1098%의 유겔화율을 나타내었다. 사슬연장제가 투입된 2관능성 폴리올인 PTMG1000의 경우에는 에멀젼된 Bunker B에 대하여 910%의 유겔화율을 나타내었으며, 에멀젼된 Bunker C에 대하여 923%의 유겔화율을 나타내었다. 3관능성 폴리올을 사용하여 제조된 NCO prepolymer의 경우, 형성된 폴리우레탄 겔은 부드럽고 강한 특성을 가져 회수에 용이한 상태를 나타내었다.

  • PDF

방카 C 중유의 점도에 관한 실험 (On the viscosity of Bunker C fuel oil)

  • 나윤호
    • 기술사
    • /
    • 제4권15호
    • /
    • pp.11-15
    • /
    • 1971
  • Bunker C fuel oil may be taken as a conc. solution of asphalt as a solute. It may be assumpt that there will be unalogical relationship between cone. solution and solute in regological behavior. Investigation was carried out to fiud out the -opitimum preheating temperature. The following results were obtained: the colloidal structure bunker C fuel oil undergoes a transition at around the softening point of the solute asphalt: and the flow charactor changes from non-Newtonian flow to Newtonian as well as its activation energy is memarkably reduced at around softening point of the solute asphalt for the purpose of the improvement of flow charater of Bunker C fuel oil, the preheating must be done above the softening point of a solute asphalt.

  • PDF