• Title/Summary/Keyword: Bulk-heterojunction

Search Result 82, Processing Time 0.027 seconds

High-Efficiency Polymer-Titanium Oxide Hybrid Solar Cells

  • Lee, Kwang-Hee
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.186-186
    • /
    • 2006
  • We report a new architecture for high efficiency polymer solar cells introducing a new concept of 'optical spacer' with new material. By implementing a novel solution-based titanium oxide ($TiO_{x}$) layer between the active layer and the electron collecting Al electrode, we invented a way to increase ${\sim}50\;%$ in power conversion efficiency compared to conventional polymer solar cells. Now the new devices exhibit ${\sim}6\;%$ power conversion efficiency, which is the highest value reported to date for a polymer based photovoltaic cell. The $TiO_{x}$ layer increases the efficiency by modifying the spatial distribution of the light intensity inside the device, thereby creating more photogenerated charge carriers in the bulk heterojunction layer.

  • PDF

Nanoscale Double Interfacial Layers for Improved Photovoltaic Effect of Polymer Solar Cells (이중 나노 계면층을 적용한 고효율 고분자 태양 전지 소자 연구)

  • Lee, Young-In;Park, Byoung-Choo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.1
    • /
    • pp.70-75
    • /
    • 2011
  • We introduced nanoscale interfacial layers between the PV layer and the cathode in poly (3-hexylthiophene):methanofullerene bulk-heterojunction polymer photovoltaic (PV) cells. The nanoscale double interfacial layers were made of ultrathin poly (oxyethylenetridecylether) surfactant and low-work-function alloy-metal of Al:Li layers. It was found that the nanoscale interfacial layers increase the photovoltaic performance, i.e., increasing short-circuit current density and fill factor with improved device stability. For PV cells with the nanoscale double interfacial layers, an increase in power conversion efficiency of $4.18{\pm}0.24%$ was achieved, compared to that of the control devices ($3.89{\pm}0.08%$) without the double interfacial layers.

Dynamic Response of Charge Recombination from Post-Annealing Process in Organic Solar Cell Using Intensity Modulated Photovoltage Spectroscopy

  • Jeong, Hanbin;Yun, Suk-Jin;Lee, Jae Kwan
    • Journal of Integrative Natural Science
    • /
    • v.9 no.4
    • /
    • pp.275-280
    • /
    • 2016
  • Intensity modulated photovoltage spectroscopy (IMVS) analysis of organic solar cells (OSCs) with a bulk-heterojunction (BHJ) film composed of P3HT and $PC_{61}BM$ was performed. The dynamic response of charge recombination by the post-annealing approach in $P3HT/PC_{61}BM$ BHJ solar cells characterized by IMVS demonstrated that post-annealing reduced the recombination of electron carriers in the device. The recombination times of $P3HT/PC_{61}BM$ BHJ solar cells post-annealed at room temperature, 80, 120, and $140^{\circ}C$ were 0.009, 0.020, 0.024, and 0.030 ms, respectively, at a short-circuit current of 0.18 mA. The results indicated that the IMVS analysis can be effectively used as powerful.

Characteristics of Polymer Solar Cells Depending on the Thickness of Active Layer

  • Lee, Dong-Gu;Noh, Seung-Uk;Suman, C.K.;Kim, Jun-Young;Lee, Seong-Hoon;Lee, Chang-Hee
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1204-1207
    • /
    • 2009
  • We investigated the device performance of bulk heterojunction solar cells depending on the active layer thickness. For the systematic comparison, the polymer solar cells comprising RR-P3HT:PCBM (1:0.8 (wt%:wt%)) blend films with different thickness were characterized by impedance spectroscopy, and J-V measurement in dark and solar simulated illumination. The device with 120 nm thickness of active layer exhibited maximum power conversion efficiency of 3.5 % under AM 1.5 100mW/$cm^2$ illumination condition.

  • PDF

The Efficiency Characteristics of the Ferroelectric Polymer Added Organic Solar-cells (강유전 고분자를 첨가한 유기태양전지의 효율 특성)

  • Park, Ja young;Jung, Chi Sup
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.9
    • /
    • pp.589-594
    • /
    • 2016
  • P3HT:PCBM bulk heterojunction solar cells added with ferroelectric polymer were fabricated and characterized. By incorporating P3HT:PCBM solar cell with P(VDF-TrFE) ferroelectric additive, the power conversion efficiency was increased up to nearly 50%. Photoacoustic analysis on this phenomena was carried out for the first time. Through this study, we find that the ferroelectricity of the polymer additive plays the key role in the enhancement of the power conversion efficiency of the organic solar cell by suppressing the non-radiative recombination of charge transfer exciton more effectively.

SnS2/p-Si Heterojunction Photodetector (SnS2/p-Si 이종접합 광 검출기)

  • Oh, Chang-Gyun;Cha, Yun-Mi;Lee, Gyeong-Nam;Jung, Bok-Mahn;Kim, Joondong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.10
    • /
    • pp.1370-1374
    • /
    • 2018
  • A heterojunction $SnS_2/p-Si$ photodetector was fabricated by RF magnetron sputtering system. $SnS_2$ was formed with 2-inch $SnS_2$ target. Al was applied as the front and the back metal contacts. Rapid thermal process was conducted at $500^{\circ}C$ to enhance the contact quality. 2D material such as $SnS_2$, MoS2 is very attractive in various fields such as field effect transistors (FET), photovoltaic fields such as photovoltaic devices, optical sensors and gas sensors. 2D material can play a significant role in the development of high performance sensors, especially due to the advantages of large surface area, nanoscale thickness and easy surface treatment. Especially, $SnS_2$ has a indirect bandgap in the single and bulk states and its value is 2 eV-2.6 eV which is considerably larger than that of the other 2D material. The large bandgap of $SnS_2$ offers the advantage for the large on-off current ratio and low leakage current. The $SnS_2/p-Si$ photodetector clearly shows the current rectification when the thickness of $SnS_2$ is 80 nm compared to when it is 135 nm. The highest photocurrent is $19.73{\mu}A$ at the wavelength of 740 nm with $SnS_2$ thickness of 80 nm. The combination of 2D materials with Si may enhance the Si photoelectric device performance with controlling the thickness of 2D layer.

분광타원분석법을 이용한 InAs 유전율 함수의 온도의존성 연구

  • Kim, Tae-Jung;Yun, Jae-Jin;Gong, Tae-Ho;Jeong, Yong-U;Byeon, Jun-Seok;Kim, Yeong-Dong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.162-162
    • /
    • 2010
  • InAs 는 광전자 및 광통신 소자에 널리 이용되는 $In_xGa_{1-x}As_yP_{1-y}$ 화합물의 endpoint 로서, Heterojunction Field-Effect Transistors (HEMTs), Heterojunction Bipolar Transistor (HBT) 등에 중요하게 이용되고, 다양한 소자의 기판으로도 폭넓게 사용되는 물질이다. InAs 의 반도체 소자로의 응용을 위해서는 정확한 광 특성과 밴드갭 값들이 필수적이며, 분광타원편광분석법(ellipsometry) 을 이용한 상온 InAs 유전율 함수는 이미 정확히 알려져 있다. 그러나 상온에서는 $E_2$ 전이점 영역에서 여러 개의 밴드갭들이 중첩되어 있어, 밴드구조계산 등에 필수적인 InAs의 전이점을 정확히 정의하기 어렵다. 또한, 현재의 산업계에서 중요하게 여겨지는 실시간 모니터링을 위해서는 증착온도에서의 유전율 함수 데이터베이스가 필수적이다. 이와 같은 필요성에 의해, 22 K - 700 K 의 온도범위에서 InAs 의 유전율 함수와 밴드갭 에너지에 대한 연구를 수행하였다. InAs bulk 기판을 methanol, acetone, DI water 등으로 세척 한 뒤, 저온 cryostat 에 부착하였다. 분광타원분석법은 표면의 오염에 매우 민감하기 때문에, 저온에서의 응결 방지를 위해 고 진공도를 유지하며, 액체 헬륨으로 냉각하였다. 0.7 - 6.5 eV 에너지 영역에서 측정이 가능한 분광타원편광분석기로 측정한 결과, 온도가 증가함에 따라 열팽창과 phonon-electron 상호작용효과의 증가에 의해, 밴드갭 에너지 값의 적색 천이와 밴드갭들의 중첩을 관찰 할 수 있었다. 정확한 밴드갭 에너지 값의 분석을 위하여 2계 미분을 통한 표준 밴드갭 해석법을 적용하였으며, 22 K 의 저온에서는 $E_2$ 전이점 영역에서 중첩된 여러 개의 밴드갭들을 분리 할 수 있었다. 또한 고온에서의 연구를 통해, 실시간 분석을 위한 InAs 유전함수의 데이터베이스를 확립하였다. 본 연구의 결과는 InAs 를 기반으로 한 광전자 소자의 개발 및 적용분야와 밴드갭 엔지니어링 분야에 많은 도움이 될 것으로 예상한다.

  • PDF

Novel 4,7-Dithien-2-yl-2,1,3-benzothiadiazole-based Conjugated Copolymers with Cyano Group in Vinylene Unit for Photovoltaic Applications

  • Kim, Jin-Woo;Heo, Mi-Hee;Jin, Young-Eup;Kim, Jae-Hong;Shim, Joo-Young;Song, Su-Hee;Kim, Il;Kim, Jin-Young;Suh, Hong-Suk
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.2
    • /
    • pp.629-635
    • /
    • 2012
  • Two novel conjugated copolymers utilizing 4,7-dithien-2-yl-2,1,3-benzothiadiazole (DTBT) coupled with cyano (-CN) substituted vinylene, as the electron deficient moeity, have been synthesized and evaluated in bulk heterojunction solar cell. The electron deficient moeity was coupled with carbazole and fluorene unit by Knoevenagel condition to provide poly(bis-2,7-((Z)-1-cyano-2-(5-(7-(2-thienyl)-2,1,3-benzothiadiazol-4-yl)-2-thienyl)ethenyl)-alt-9-(1-octylnonyl)-9H-carbazol-2-yl-2-butenenitrile) (PCVCNDTBT) and poly(bis-2,7-((Z)-1-cyano-2-(5-(7-(2-thienyl)-2,1,3-benzothiadiazol-4-yl)-2-thienyl)ethenyl)-alt-9,9-dihexyl-9H-fluoren-2-yl) (PFVCNDTBT). The optical band gaps of PCVCNDTBT (1.74 eV) and PFVCNDTBT (1.80 eV) are lower than those of PCDTBT (1.88 eV) and PFVDTBT (2.13 eV), which is advantageous to provide better coverage of the solar spectrum in the longer wavelength region. The high $V_{oc}$ value of the PSC of PCVCNDTBT (~0.91 V) is attributed to its lower HOMO energy level ( 5.6 eV) as compared to PCDTBT ( 5.5 eV). Bulk heterojunction solar cells based on the blends of the polymers with [6,6]phenyl-$C_{61}$-butyric acid methyl ester ($PC_{61}BM$) gave power conversion efficiencies of 0.76% for PCVCNDTBT under AM 1.5, 100 mW/$cm^2$.

Fabrication and Characterization of Organic Solar Cells with Gold Nanoparticles in PEDOT:PSS Hole Transport Layer (PEDOT:PSS 정공 수송층에 금 나노입자를 첨가한 유기태양전지의 제작 및 특성 연구)

  • Kim, Seung Ho;Choi, Jae Young;Chang, Ho Jung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.20 no.2
    • /
    • pp.39-46
    • /
    • 2013
  • In this paper, organic solar cells(OSCs) based on bulk-heterojunction structures were fabricated by spin coating method using polymer P3HT and fullerene PCBM as a photoactive layer. The fabricated OSCs had a simple glass/ITO/PEDOT:PSS/P3HT:PCBM/Al structures. The photoactive layer of mixed P3HT:PCBM was formed with 1:1 weight ratio. The hole transport layer(HTL) was used conducting polymer PEDOT:PSS concentration with gold nanoparticles. The annealing temperature and concentration of nanoparticles in HTL were verified to improve the OSC characterization. The percentage of gold nanoparticles in HTL were 0.5 wt% and 1.0 wt%, and the surface morphology, electrical properties and absorption intensities were investigated. The devices were 0.5 wt%, and the highest 3.1% of the powder conversion efficiency(PCE), 10.2 $mA/cm^2$ of the maximum short circuit current density($J_{SC}$), 0.535V of the open circuit voltage($V_{OC}$) and 55.8% of the fill factor(F.F) could be obtained when the nanoparticle concertration was 0.5 wt%. The annealing temperature of HTL was $110^{\circ}C$, $130^{\circ}C$, $150^{\circ}C$ in vacuum oven and measured the absorption intensities, surface morphology, crystallinity and electrical properties were investigated. The best property was obtained in HTL annealed at $130^{\circ}C$ for gold nanoparticles of 0.5 wt%, showing that $J_{SC}$, $V_{OC}$, F.F and PCE were about 12.0 $mA/cm^2$, 0.525V, 64.2% and 4.0%, respectively.

Performance Characteristics of p-i-n Type Organic Thin-film Photovoltaic Cell with CuPc: $F_4$-TCNQ Hole Transport Layer (CuPc: $F_4$-TCNQ 정공 수송층이 도입된 P-i-n형 유기 박막 태양전지의 성능 특성 연구)

  • Park, So-Hyun;Kang, Hak-Su;Senthilkumar, Natarajan;Park, Dae-Won;Choe, Young-Son
    • Polymer(Korea)
    • /
    • v.33 no.3
    • /
    • pp.191-197
    • /
    • 2009
  • We have investigated the effect of strong p-type organic semiconductor $F_4$-TCNQ-doped CuPc hole transport layer on the performance of p-i-n type bulk heterojunction photovoltaic device with ITO/PEDOT:PSS/CuPc: $F_4$-TCNQ(5 wt%)/CuPc:C60(blending ratio l:l)/C60/BCP/LiF/Al, architecture fabricated via vacuum deposition process, and have evaluated the J-V characteristics, short-circuit current ($J_{sc}$), open-circuit voltage($V_{oc}$), fill factor(FF), and power conversion efficiency(${\eta}_e$) of the device. By doping $F_4$-TCNQ into CuPc hole transport layer, increased absorption intensity in absorption spectra, uniform dispersion of organic molecules in the layer, surface uniformity of the layer, and enhanced injection currents improved the current photovoltaic device with power conversion efficiency(${\eta}_e$) of 0.16%, which is still low value compared to silicone solar cell indicating that many efforts should be made to improve organic photovoltaic devices.