• Title/Summary/Keyword: Bulk mechanical alloying

Search Result 26, Processing Time 0.035 seconds

Solid-state Synthesis of $Mg_2X$ (X=Si, Ge, Sn and Pb) via Bulk Mechanical Alloying

  • Aizawa, Tatsuhiko;Song, Renbo
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.831-832
    • /
    • 2006
  • Solid-state processing via the bulk mechanical alloying enables us to directly fabricate $Mg_2X$ semi-conductive material performs. Precise control of chemical composition leads to investigation on the dilution and enrichment of X in $Mg_2X$. Two types of solid-state reactivity are introduced: e.g. synthesis of $Mg_2Si$ from elemental mixture Mg-Si is nucleation-controlled process while synthesis of $Mg_2Sn$ from Mg-Sn, diffusion-controlled process. Thermoelectricity of these $Mg_2X$ is evaluated for discussion on the validity and effectiveness of this new PM route as a reliable tool for fabrication of thermoelectric compounds.

  • PDF

Mg-Y-Cu Bulk Metallic Glass Obtained by Mechanical Alloying and Powder Consolidation

  • Lee, P.Y.;Hsu, C.F.;Wang, C.C.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.950-951
    • /
    • 2006
  • [ $Mg_{55}Y_{15}Cu_{30}$ ] metallic glass powders were prepared by the mechanical alloying of pure Mg, Y, and Cu after 10 h of milling. The thermal stability of these $Mg_{55}Y_{15}Cu_{30}$ amorphous powders was investigated using the differential scanning calorimeter (DSC). $T_g$, $T_x$, and ${\Delta}T_x$ are 442 K, 478 K, and 36 K, respectively. The as-milled $Mg_{55}Y_{15}Cu_{30}$ powders were then consolidated by vacuum hot pressing into disk compacts with a diameter and thickness of 10 mm and 1 mm, respectively. This yielded bulk $Mg_{55}Y_{15}Cu_{30}$ metallic glass with nanocrystalline precipitates homogeneously embedded in a highly dense glassy matrix. The pressure applied during consolidation can enhance thermal stability and prolong the existence of amorphous phase within $Mg_{55}Y_{15}Cu_{30}$ powders.

  • PDF

Determination of the Degree of Alloying by Detection of Residual Ferromagnetic Elements for Intermetallic Alloys Processed by Mechanical Alloying (잔류 자성원소 검출에 의한 금속간화합물의 기계적 합금화 공정에서의 합금화 정도 해석)

  • Ur, Soon-Chul
    • Korean Journal of Materials Research
    • /
    • v.13 no.9
    • /
    • pp.561-566
    • /
    • 2003
  • Mechanical alloying(MA) process using elemental powders followed by hot pressing has been applied to some intermetallic alloy system containing ferromagnetic elements, such as NiAl and $FeSi_2$. A modified thermogravimetric analysis (TGA) technique was used to investigate the degree of alloying in milled powders and hot consolidated specimens as well as heat-treated bulk specimens. It is shown that the measurement of Curie temperatures in MA intermetallic powders and consolidated specimens containing ferromagnetic components, when determined as a function of milling and heat treatment parameters, can give some insight into the progress and mechanism of alloying.

High Strength Nanostructured Metastable Alloys

  • Eckert, Jurgen;Bartusch, Birgit;Schurack, Frank;He, Guo;Schultz, Ludwig
    • Journal of Powder Materials
    • /
    • v.9 no.6
    • /
    • pp.394-408
    • /
    • 2002
  • Nanostructured high strength metastable Al-, Mg- and Ti-based alloys containing different amorphous, quasicrystalline and nanocrystalline phases are synthesized by non-equilibrium processing techniques. Such alloys can be prepared by quenching from the melt or by powder metallurgy techniques. This paper focuses on one hand on mechanically alloyed and ball milled powders containing different volume fractions of amorphous or nano-(quasi)crystalline phases, consolidated bulk specimens and, on the other hand. on cast specimens containing different constituent phases with different length-scale. As one example. $Mg_{55}Y_{15}Cu_{30}$- based metallic glass matrix composites are produced by mechanical alloying of elemental powder mixtures containing up to 30 vol.% $Y_2O_3$ particles. The comparison with the particle-free metallic glass reveals that the nanosized second phase oxide particles do not significantly affect the glass-forming ability upon mechanical alloying despite some limited particle dissolution. A supercooled liquid region with an extension of about 50 K can be maintained in the presence of the oxides. The distinct viscosity decrease in the supercooled liquid regime allows to consolidate the powders into bulk samples by uniaxial hot pressing. The $Y_2O_3$ additions increase the mechanical strength of the composites compared to the $Mg_{55}Y_{15}Cu_{30}$ metallic glass. The second example deals with Al-Mn-Ce and Al-Cu-Fe composites with quasicrystalline particles as reinforcements, which are prepared by quenching from the melt and by powder metallurgy. $Al_{98-x}Mn_xCe_2$ (x =5,6,7) melt-spun ribbons containing a major quasicrystalline phase coexisting with an Al-matrix on a nanometer scale are pulverized by ball milling. The powders are consolidated by hot extrusion. Grain growth during consolidation causes the formation of a micrometer-scale microstructure. Mechanical alloying of $Al_{63}Cu_{25}Fe_{12}$ leads to single-phase quasicrystalline powders. which are blended with different volume fractions of pure Al-powder and hot extruded forming $Al_{100-x}$$(Al_{0.63}Cu_{0.25}Fe_{0.12})_x$ (x = 40,50,60,80) micrometer-scale composites. Compression test data reveal a high yield strength of ${\sigma}_y{\geq}$700 MPa and a ductility of ${\varepsilon}_{pl}{\geq}$5% for than the Al-Mn-Ce bulk samples. The strength level of the Al-Cu-Fe alloys is ${\sigma}_y{\leq}$550 MPa significantly lower. By the addition of different amounts of aluminum, the mechanical properties can be tuned to a wide range. Finally, a bulk metallic glass-forming Ti-Cu-Ni-Sn alloy with in situ formed composite microstructure prepared by both centrifugal and injection casting presents more than 6% plastic strain under compressive stress at room temperature. The in situ formed composite contains dendritic hcp Ti solid solution precipitates and a few $Ti_3Sn,\;{\beta}$-(Cu, Sn) grains dispersed in a glassy matrix. The composite micro- structure can avoid the development of the highly localized shear bands typical for the room temperature defor-mation of monolithic glasses. Instead, widely developed shear bands with evident protuberance are observed. resulting in significant yielding and homogeneous plastic deformation over the entire sample.

Effect of Carbon-Nanotube Addition on Thermal Stability of Ti-based Metallic Glass Composites

  • Hsu, Chih-Feng;Lee, Pee-Yew
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1057-1058
    • /
    • 2006
  • The preparation of $Ti_{50}Cu_{28}Ni_{15}Sn_7$ metallic glass composite powders was accomplished by the mechanical alloying of a pure Ti, Cu, Ni, Sn and carbon nanotube (CNT) powder mixture after 8 h milling. In the ball-milled composites, the initial CNT particles were dissolved in the Ti-based alloy glassy matrix. The bulk metallic glass composite was successfully prepared by vacuum hot pressing the as-milled CNT/$Ti_{50}Cu_{28}Ni_{15}Sn_7$ metallic glass composite powders. A significant hardness increase with the CNT additions was observed for the consolidated composite compacts.

  • PDF

Thermoelectric Material Design in Pseudo Binary Systems of $Mg_2Si-Mg_2Ge-Mg_2Sn$ on the Powder Metallurgy Route

  • Aizawa, Tatsuhiko;Song, Renbo;Yamamoto, Atsushi
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.75-76
    • /
    • 2006
  • New PM route via bulk mechanical alloying is developed to fabricate the solid solution semi-conductive materials with $Mg_2Si_{1-x}Ge_x$ and $Mg_2Si_{1-y}Sn_y$ for 0 < x, y < 1 and to investigate their thermoelectric materials. Since $Mg_2Si$ is n-type and both $Mg_2Ge$ and $Mg_2Sn$ are p-type, pn-transition takes place at the specified range of germanium content, x, and tin content, y. Through optimization of chemical composition, solid-solution type thermoelectric semi-conductive materials are designed both for n-and p-type materials.

  • PDF

The Role of H2O as PCA and the Precipitation Behavior in Mechanically Alloyed Ni-20Cr-20Fe-5Nb Alloy (기계적합금화로 제조된 Ni-20Cr-20Fe-5Nb 합금에서 PCA로서 H2O의 역할과 시효석출거동)

  • Kim Il-Ho;Kwun S.I.;Lee Won-Sik;Chae S.W.;Hwang S.K.;Kim M.H.
    • Journal of Powder Materials
    • /
    • v.13 no.3 s.56
    • /
    • pp.178-186
    • /
    • 2006
  • The effect of use of $H_2O$ as PCA(process control agent) to prevent the carbon contamination during mechanical alloying process and the precipitation behavior in Ni-20Cr-20Fe-5Nb bulk alloy after aging were investigated. NbC and $Cr_2O_3$ were formed during mechanical alloying and consolidation processes in the Ni-20Cr-20Fe-5Nb alloy in which methanol($CH_3OH$) was added as PCA. Formation of NbC in this alloy decreased the amount of Nb dissolved in the Ni matrix. The use of $H_2O$ as PCA in Ni-20Cr-20Fe-5Nb alloy prevented the formation of NbC and increased the hardness. The increase of hardness in this alloy was attributed to the increased amount of Nb dissolved in the Ni matrix. After aging treatment for 20 hours at $600^{\circ}C\;and\;720^{\circ}C$ of Ni-20Cr-20Fe-5Nb bulk alloy in which $H_2O$ added as PCA, ${\gamma}"$$(Ni_3Nb,\;tetragonal)\;and\;{\delta}\;(Ni_3Nb,\;orthorhombic)$ precipitates were formed, respectively. The precipitation temperatures of ${\gamma}"$ and ${\delta}$ in this bulk alloy were lower than those in commercial IN 718 alloy. It seemed that the lower precipitation temperatures for ${\gamma}"$ and ${\delta}$ in this bulk alloy than in commercial IN 718 alloy were due to severe plastic deformation during mechanical alloying.

Toughness and Damping Properties of Nanostructured Ni-Al Alloys Produced by Mechanical Alloying Methods (기계적합금화법에 의해 제조된 NiAl 나노금속간화합물 소결체의 인성 및 제진특성)

  • 안인섭;김형범;김영도;김지순
    • Journal of Powder Materials
    • /
    • v.7 no.3
    • /
    • pp.143-148
    • /
    • 2000
  • NiAl alloy powders were prepared by mechanical alloying method and bulk specimens were produced using hot isostatic pressing techniques. This study focused on the transformation behavior and properties of Ni-Al mechanically alloyed powders and bulk alloys. Transformation behavior was investigated by differential scanning calorimeter (DSC), XRD and TEM. Particle size distribution and microstructures of mechanically alloyed powders were studied by particle size analyzer and scanning electron microscope (SEM). After 10 hours milling, XRB peak broadening appeared at the alloyed powders with compositions of Ni-36at%Al to 40at%Al. The NiAl and $Ni_3Al$ intermetallic compounds were formed after water quenching of solution treated powders and bulk samples at $1200^{\circ}C$, but the martensite phase was observed after liquid nitrogen quenching of solution treated powders. However, the formation of $Ni_3Al$ intermetallic compounds were not restricted by fast quenching into liquid nitrogen. It is considered to be caused by fast diffusion of atoms for the formation of stable $\beta$(NiAl) phase and $Ni_3Al$ due to nano sized grains during quenching. Amounts of martensite phase increased as the composition of aluminium component decreased in the Ni-Al alloy, which resulted in the increasing damping properties.

  • PDF