• 제목/요약/키워드: Bulk conductivity

검색결과 250건 처리시간 0.013초

Modified electrical conductivity test method for evaluation concrete permeability

  • Pilvar, Amirreza;Ramezanianpour, Ali Akbar;Rajaie, Hosein
    • Computers and Concrete
    • /
    • 제16권6호
    • /
    • pp.865-880
    • /
    • 2015
  • Standard test method for bulk electrical conductivity (ASTM C1760) provides a rapid indication of the concrete's resistance to the penetration of chloride ions by diffusion. In this paper a new approach for assessing the bulk electrical conductivity of saturated specimens of hardened concrete is presented. The test involves saturating concrete specimens with a 5 M NaCl solution before measuring the conductivity of the samples. By saturating specimens with a highly conductive solution, they showed virtually the same pore solution conductivity. Different concrete samples yield different conductivity primarily due to differences in their pore structure. The feasibility of the method has been demonstrated by testing different concrete mixtures consisting ordinary and blended cement of silica fume (SF) and calcined perlite powder (CPP). Two standard test methods of RCPT (ASTM C1202) and Bulk Conductivity (ASTM C1760) were also applied to all of the samples. The results show that for concretes containing SF and CPP, the proposed method is less sensitive towards the variations in the pore solution conductivity in comparison with RCPT and Bulk Conductivity tests. It seems that this method is suitable for the assessment of the performance and durability of different concretes containing supplementary cementitious materials.

접촉열전도재를 도포한 접촉열저항 특성연구 (Characterization of Thermal Contact Resistance Doped with Thermal Interface Material)

  • ;;;문병준;이선규
    • 한국정밀공학회지
    • /
    • 제30권9호
    • /
    • pp.943-950
    • /
    • 2013
  • This paper describes the thermal contact resistance and its effect on the performance of thermal interface material. An ASTM D 5470 based apparatus is used to measure the thermal interface resistance. Bulk thermal conductivity of different interface material is measured and compared with manufacturers' data. Also, the effect of grease void in the contact surface is investigated using the same apparatus. The flat type thermal interface tester is proposed and compared with conventional one to consider the effect of lateral heat flow. The results show that bulk thermal conductivity alone is not the basis to select the interface material because high bulk thermal conductivity interface material can have high thermal contact resistance, and that the center voiding affects the thermal interface resistance seriously. On the aspect of heat flow direction, thermal impedance of the lateral heat flow shows higher than that of the longitudinal heat flow by sixteen percent.

고주파 임피던스를 이용한 곡류의 함수율 측정에 관한 연구 (I) - 곡류의 전기적 특성 구명 - (Measurement of Grain Moisture Content using RF Impedance (I) - Electrical Properties of Grain -)

  • 김기복;노상하
    • Journal of Biosystems Engineering
    • /
    • 제24권2호
    • /
    • pp.123-134
    • /
    • 1999
  • The electrical properties such as dielectric constant, dielectric loss factor and AC conductivity of grain were presented to measure the moisture content of grain using RF impedance. At frequency ranging from 1 to 10MHz and room temperature, $20^{\circ}C$, vector network analyzer(HP4195) and coaxial type sample holder were used to analyze the electrical properties of paddy(11∼24%w.b.), brown rice(11∼18%w.b.), barley(11∼21%w.b.) and wheat(11∼23%w.b.) depending on the moisture content, frequency and bulk density. The dielectric constant and AC conductivity of grain samples increased with moisture content and bulk density. The dielectric constants decreased with frequency and could be expressed as function of the moisture density(decimal moisture $content{\times}bulk$ density).

  • PDF

Bulk graphite: materials and manufacturing process

  • Lee, Sang-Min;Kang, Dong-Su;Roh, Jea-Seung
    • Carbon letters
    • /
    • 제16권3호
    • /
    • pp.135-146
    • /
    • 2015
  • Graphite can be classified into natural graphite from mines and artificial graphite. Due to its outstanding properties such as light weight, thermal resistance, electrical conductivity, thermal conductivity, chemical stability, and high-temperature strength, artificial graphite is used across various industries in powder form and bulk form. Artificial graphite of powder form is usually used as anode materials for secondary cells, while artificial graphite of bulk form is used in steelmaking electrode bars, nuclear reactor moderators, silicon ingots for semiconductors, and manufacturing equipment. This study defines artificial graphite as bulk graphite, and provides an overview of bulk graphite manufacturing, including isotropic and anisotropic materials, molding methods, and heat treatment.

비정질 실리콘의 전기 전도도에 대한 이론적 모델 및 실험적 분석 (Theoretical Model and Experimental Analysis of Electrical Conductivity in Hydrogenated Amorphous Silicon)

  • 김용상;박진석;한민구
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1989년도 추계학술대회 논문집 학회본부
    • /
    • pp.127-130
    • /
    • 1989
  • This paper reports the theoretical model and the experimental results regarding to the electrical conductivity of hydrogenated amorphous silicon (a-Si:H). The total effective conductance of a-Si:H with a planar structure has been considered as the sum of the conductance of an adsorbate-induced layer, a surface-interface layer, a bulk layer, and a substrate-interface layer. In order to investigate the effects of space charge layers in a-Si:H on the conductivity, the thickness dependence of the conductivity is characterized and the conductivities measured at the upper electrodes deposited on a-Si:H are compared with those measured at the lower electrodes deposited on the glass substrate. From our analysis, the bulk conductivity and the thickness of the space charge layer in a-Si:H are characterized quantitatively.

  • PDF

Correlation Between Bulk and Surface Resistivity of Concrete

  • Ghosh, Pratanu;Tran, Quang
    • International Journal of Concrete Structures and Materials
    • /
    • 제9권1호
    • /
    • pp.119-132
    • /
    • 2015
  • Electrical resistivity is an important physical property of portland cement concrete which is directly related to chloride induced corrosion process. This study examined the electrical surface resistivity (SR) and bulk electrical resistivity (BR) of concrete cylinders for various binary and ternary based high-performance concrete (HPC) mixtures from 7 to 161 days. Two different types of instruments were utilized for this investigation and they were 4 point Wenner probe meter for SR and Merlin conductivity tester for bulk resistivity measurements. Chronological development of electrical resistivity as well as correlation between two types of resistivity on several days was established for all concrete mixtures. The ratio of experimental surface resistance to bulk resistance and corresponding resistivity was computed and compared with theoretical values. Results depicted that bulk and SR are well correlated for different groups of HPC mixtures and these mixtures have attained higher range of electrical resistivity for both types of measurements. In addition, this study presents distribution of surface and bulk resistivity in different permeability classes as proposed by Florida Department of Transportation (FDOT) specification from 7 to 161 days. Furthermore, electrical resistivity data for several HPC mixtures and testing procedure provide multiple promising options for long lasting bridge decks against chloride induced corrosion due to its ease of implementation, repeatability, non-destructive nature, and low cost.

TDR(Time Domain Reflectometry)을 이용한 토양수농도 측정에 관한 연구 (A study on the Measurement of Soil Water Concentration by Time Domain Reflectometry)

  • 박재현
    • 한국수자원학회논문집
    • /
    • 제31권2호
    • /
    • pp.123-132
    • /
    • 1998
  • 비포화대에서의 지하수 오염원의 이송을 관측하는 것은 매우 어려운 거승로 알려져 있다. 본 연구에서는 함수량과 농도가 다른 시료를 이용하여 비포화 용존 오염원의 농도를 측정하기 위한 TDR의 적용가능성에 대한 검정실험을 수행하였다. 초기전자기파에 대한 TDR반향파의 감쇄정도를 이용하여 토양의 총전기전도도를 측정하게 되는데 이때 함수량이 일정할 경우 총전기전도도와 토양수의 농도관계는 선형관계를 유지한다는 가정을 기본으로한다. 본 연구에서는 세가지의 농도와 체적함수량을 갖는 시료를 성형하고 이때의 TDR 반향곡선을 측정하여 Dalton 등(1984), Topp 등(1988), Yanuka 등(1988), Zegelin 등 (1989)이 제안한 추정식으로 통초양전기전도도를 구하였다. 실험결과 Zegelin등이 제안한 식을 제외한 세 가지 식들은 매우 좋은 토양수의 농도와 총전기전도도의 선형관계를 나타내었다. 따라서 이 세가지 추정식들은 용존 오염원의 농도를 추정함에 있어 매우 유용한 식으로 판단되며 이 추정식들을 이용하는 TDR 비포화 용존 오염원 측정법은 실내실험과 현장실험에 있어 매우 유용하리라 판단된다.

  • PDF

토양의 용적밀도에 따른 포화수리전도도 및 음이온의 용출양상 (Effects of Soil Bulk Density on Saturated Hydraulic Conductivity and Solute Elution Patterns)

  • 김필주;이도경;정덕영
    • 한국토양비료학회지
    • /
    • 제30권3호
    • /
    • pp.234-241
    • /
    • 1997
  • 시설 재배지내 염류집적의 원인의 하나인 토양의 용적밀도 변화가 염류집적에 미치는 영향을 조사하기 위해, 충남 예산군 오가면의 시설재배 10여년 연작지 토양의 Ap층을 이용하여 용적밀도 변화에 따른 수리전도도 변화와 전기전도도 및 음이온의 용출특성 변화를 토주(土柱)실험을 통해 조사하였다. 수리전도도(Y, cm/day)와 용적별도(X, $Mg/m^3$)간에는 부의 회귀관계 ($Y=-19.2X^2+6X+15.5$, (r=0.985)) 가 성립하여, 낮은 용적밀도에서는 큰 폭의 수리전도도 감소가 있으며, $1.4Mg/m^3$ 이상의 높은 용적밀도 조건에서는 용적밀도 변화에 따른 수리전도도 변화가 매우 미미 하였다. 위의 5 수준의 용적밀도 조건하에서 시간변화에 따른 용출액 중 용존 물질의 용출속도는 용적밀도 증가에 따라 크게 지연되었다. 용출액의 전기전도도가 최고점에 도달하는 시간을 비교한결과 용적밀도 $1.3Mg/m^3$ 이하에서는 토양단면 10cm를 통과하는데 약 36시간 이내의 시간이 요구되었으며, 용적밀도 $1.4Mg/m^3$ 이상에는 120시간 이상이 요구되어 두 조건사이 약 84시간의 사이가 있었다. 토양내 이행성이 높은 주요 3가지 음이온의 용출속도도 용적밀도 증가에 따라 크게 지연되었으며, 용적밀도 $1.2Mg/m^3$ 일 때 Chloride, Nitrate와 Sulphate가 90%이상 용출 되는데 각각 17, 15, 35시간이 소요된 반면, 용적밀도 $1.5Mg/m^3$ 일 때 각각은 90%이상 용출 되는데 약 130, 125, 213시간이 각각 소요되었다. 따라서 경작층 전후의 큰 용적밀도 차이를 보이고 있는 충남 예산 지역의 시설재배지내 염류집적의 원인들 중 경작층 이하인 지표면 아래 20~30cm 부근에 형성된 용적밀도(容積密度) $1.5Mg/m^3$ 이상인 경반층(硬盤層)에 의한 토양수 흐름과 각종 무기염류의 이동 지연으로 인해 크게 악화되고, 지표면에 염류집적이 가속화된 것으로 판단된다.

  • PDF

Threshold Subsoil Bulk Density for Optimal Soil Physical Quality in Upland: Inferred Through Parameter Interactions and Crop Growth Inhibition

  • Cho, Hee-Rae;Han, Kyung-Hwa;Zhang, Yong-Seon;Jung, Kang-Ho;Sonn, Yeon-Kyu;Kim, Myeong-Sook;Choi, Seyeong
    • 한국토양비료학회지
    • /
    • 제49권5호
    • /
    • pp.548-554
    • /
    • 2016
  • Optimal range of soil physical quality to enhance crop productivity or to improve environmental health is still in dispute for the upland soil. We hypothesized that the optimal range might be established by comparing soil physical parameters and their interactions inhibiting crop growth. The parameter identifying optimal range covered favorable conditions of aeration, permeability and root extension. To establish soil physical standard two experiments were conducted as follows; 1) investigating interactions of bulk density and aeration porosity in the laboratory test and 2) determining effects of soil compaction and deep & conventional tillage on physical properties and crop growth in the field test. The crops were Perilla frutescens, Zea mays L., Solanum tuberosum L. and Secale cereael. The saturated hydraulic conductivity, bulk density from the root depth, root growth and stem length were obtained. Higher bulk density showed lower aeration porosity and hydraulic conductivity, and finer texture had lower threshold bulk density at 10% aeration bulk density. Reduced crop growth by subsoil compaction was higher in silt clay loam compared to other textures. Loam soil had better physical improvement in deep rotary tillage plot. Combined with results of the present studies, the soil physical quality was possibly assessed by bulk density index. Threshold subsoil bulk density as the upper value were $1.55Mg\;m^{-3}$ in sandy loam, $1.50Mg\;m^{-3}$ in loam and $1.45Mg\;m^{-3}$ in silty clay loam for optimal soil physical quality in upland.

금속입자가 전도성 잉크의 전도도에 미치는 영향 (Effect of Metal Powders on the Conductivity of Conductive Inks)

  • 권두효;정태의;김남수;한국남
    • 한국공작기계학회논문집
    • /
    • 제17권2호
    • /
    • pp.97-103
    • /
    • 2008
  • In this investigation, conductivity of conductive inks was measured. A particular attention has been given to the effect of metal powders with various conductivity on the overall conductivity of the bulk ink. The conductivity of various solutions simulating conductive inks consisting of copper and silver was measured and the results have been discussed in relation to various applications of conductive inks in practice. A conductivity model simulating systems consisting of various materials has been introduced and the results were discussed. Materials of good conductivity are adversely affected by mixing with materials of poor conductivity simply through serial connection. However, parallel connection has rather little effect on the overall conductivity. The practical implication of various mixtures of materials on conductive inks has been discussed.