• Title/Summary/Keyword: Bulk composite

Search Result 244, Processing Time 0.026 seconds

Effect of resin thickness on the microhardness and optical properties of bulk-fill resin composites

  • Kim, Eun-Ha;Jung, Kyoung-Hwa;Son, Sung-Ae;Hur, Bock;Kwon, Yong-Hoon;Park, Jeong-Kil
    • Restorative Dentistry and Endodontics
    • /
    • v.40 no.2
    • /
    • pp.128-135
    • /
    • 2015
  • Objectives: This study evaluated the effects of the resin thickness on the microhardness and optical properties of bulk-fill resin composites. Materials and Methods: Four bulk-fill (Venus Bulk Fill, Heraeus Kulzer; SDR, Dentsply Caulk; Tetric N-Ceram Bulk Fill, Ivoclar vivadent; SonicFill, Kerr) and two regular resin composites (Charisma flow, Heraeus Kulzer; Tetric N-Ceram, Ivoclar vivadent) were used. Sixty acrylic cylindrical molds were prepared for each thickness (2, 3 and 4 mm). The molds were divided into six groups for resin composites. The microhardness was measured on the top and bottom surfaces, and the colors were measured using Commission Internationale d'Eclairage (CIE) $L^*a^*b^*$ system. Color differences according to the thickness and translucency parameters and the correlations between the microhardness and translucency parameter were analyzed. The microhardness and color differences were analyzed by ANOVA and Scheffe's post hoc test, and a student t-test, respectively. The level of significance was set to ${\alpha}=0.05$. Results: The microhardness decreased with increasing resin thickness. The bulk-fill resin composites showed a bottom/top hardness ratio of almost 80% or more in 4 mm thick specimens. The highest translucency parameter was observed in Venus Bulk Fill. All resin composites used in this study except for Venus Bulk Fill showed linear correlations between the microhardness and translucency parameter according to the thickness. Conclusions: Within the limitations of this study, the bulk-fill resin composites used in this study can be placed and cured properly in the 4 mm bulk.

The Trapped Field Characteristics of YBCO Superconductor Composite in Terms of Applied Magnetic Field (인가 자기장에 의한 YBCO 초전도체 복합체의 포획 자기장 특성)

  • Lee, M.S.;Jang, G.E.;Choi, Y.S.;Jun, B.H.;Han, Y.H.;Park, B.J.
    • Progress in Superconductivity
    • /
    • v.12 no.1
    • /
    • pp.12-16
    • /
    • 2010
  • We have measured the trapped field of YBCO bulk with different configuration by applying the magnetic field of $Nb_3Sn$ superconducting magnet. Initially the circular type of YBCO bulk superconductor was prepared and then hole, parallel to the c-axis and located at the center of bulk was mechanically drilled. The YBCO bulk with hole was filled with resin. Typical size of hole in YBCO bulk was 10 mm in diameter. Trapped field characteristics were compared with different specimen conditions. Our preliminary result indicates the increment rate of trapped field, 0.232 kG, measured on the YBCO without hole was much higher than that, 0.011 kG, measured on YBCO with hole.

Room and High Temperature Deformation Behaviors and Estimation on Formability of Zr-based Bulk Metallic Glass Composite (Zr-Nb-Cu-Ni-Al 비정질 복합 재료의 변형거동과 성형성)

  • Jun, H.J.;Lee, K.S.;Kuhn, U.;Eckert, J.;Chang, Y.W.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.199-202
    • /
    • 2008
  • In this study, we investigated the thermal properties of $Zr_{66.4}Nb_{6.4}Cu_{10.5}Ni_{8.7}Al_{8.0}$ by using a differential scanning calorimeter (DSC), and then analyzed the composition of dendrite phase by using X-ray diffraction (XRD). A series of uniaxial compression tests has been performed under the strain rates between $10^{-5}/s$ and $10^{-2}/s$ at room temperature and near SLR. This BMGC has higher high temperature strength than other Zr-based monolithic BMGs because in-situ formed crystalline phases hinder a feasible viscous flow of amorphous matrix. Warm formability is also estimated by laboratory-scale extrusion test within supercooled liquid region. It was found that BMGC has poor formability compared with nother Zr-based bulk metallic glass composite presumably due to large volume fraction of 'brittle' crystalline phases distributed within amorphous matrix.

  • PDF

Shape Optimization in Laminated Composite Plates by Volume Control (최적 제어를 통한 복합적층판의 형상최적화)

  • 한석영;백춘호;박재용
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.277-282
    • /
    • 2003
  • The growth-strain method was applied to cutout optimization in laminated composite plates. Since the growth-strain method optimizes a shape by generating the bulk strain to make the distributed parameter uniform, the distributed parameter was chosen as Tsai-Hill value. In this study, of particular interest is to see whether the growth-strain method developed for shape optimization in isotropic media would work for laminated composite Plates. In volume control of the growth-strain method, it makes Tsai-Hill value at each element uniform in laminated composite plates under the predetermined volume. The shapes optimized by Tsai-Hill fracture index were compared with those of the initial shapes for the various load conditions and predetermined volumes of laminated composite plates. As a result, it was verified that volume control of the growth-strain method worked very well for cutout optimization in laminated composite plates.

  • PDF

Fe-Based Nano-Structured Powder Reinforced Zr-Based Bulk Metallic Glass Composites by Powder Consolidation

  • Cho, Seung-Mok;Han, Jun-Hyun;Lee, Jin-Kyu;Kim, Yu-Chan
    • Korean Journal of Materials Research
    • /
    • v.19 no.9
    • /
    • pp.504-509
    • /
    • 2009
  • The Zr-based bulk metallic glass matrix composites of a mixture of gas-atomized metallic glass powders and Fe-based nanostructured powders were fabricated by spark plasma sintering. The Fe-based nanostructured powders adopted for the enhancement of plasticity were well distributed in the matrix after consolidation, and the matrix remains as a fully amorphous phase. The successful consolidation of metallic glass matrix composite with high density was attributed to viscous flow in the supercooled liquid state during spark plasma sintering. Unlike other amorphous matrix composites, in which improved ductility could be obtained at the expense of their strength, the developed composite exhibited improvement both in strength and ductility. The ductility improvement in the composite was considered to be due to the formation of multiple shear bands under the presence of the Fe-based nanostructured particles.

Preparation of Carbon Composite with High Oxidation Resistance by MoSi2 Dispersion

  • Goto, S.;Kodera, M.;Toda, S.;Fujimori, H.;Ioku, K.
    • The Korean Journal of Ceramics
    • /
    • v.5 no.2
    • /
    • pp.115-118
    • /
    • 1999
  • Carbon composites with $MoSi_2$ dispersion were prepared by hot-pressing at $1700^{\circ}C$ under 30 MPa for 1 h using polysilazance as binding material. The composites consisted of C, $Mo_{4.8}Si_3C_{0.6}$ and SiC. Bulk density and porosity of the carbon composites with 10 vol% $MoSi_2$ was 1.8g.$\textrm{cm}^{-3}$ and 34%, respectively. This composite was oxidized about 0.05mm from the surface of the carbon composite after oxidation test at $1500^{\circ}C$ for 10h in air. Formation of the $SiO_2$ glass layer was observed by SEM. When this composite suffered damage in the coating layer, it had hardly farther oxidation because of its self-repairing property. The composite prepared in this study indicated good oxidation resistance.

  • PDF

Bulk-fill 복합레진, 믿고 사용해도 될까?

  • Koh, Kyeol;Park, Jeong-Won
    • The Journal of the Korean dental association
    • /
    • v.57 no.3
    • /
    • pp.162-168
    • /
    • 2019
  • Composite resin restorations in posterior teeth are increasing due to the aesthetic needs of patients and the development of materials. This trend will accelerate in line with domestic insurance policies. However, resin composites generate stresses due to their contraction during the polymerization process. To reduce the polymerization shrinkage stress of resin composites, incremental layering technique has been recommended for decades. This technique reduces stress at the cavity wall interface and allows a more efficient light curing of the material. Bulk-fill resin composites have been designed to simplify the restorative technique because they can be placed into cavities in a single increment of 4-5mm. The simplification of the operative procedures is desirable in clinical daily practice. In this context, bulk-fill resin composites are an attractive alternative for posterior restorations. However, a clearer understanding of the clinical performance of this relatively new class of materials in comparison to conventional resin composites is required. Based on previous studies, the aim of the current review was to present the clinical criteria for the use of bulk-fill composites in direct restorations of posterior teeth.

  • PDF

Preparation of Bio-Chemical Sensor Electrodes by Using Electrical Impedance Properties of Carbon Nanotube Based Bulk Materials (탄소나노튜브 기반 벌크 소재의 전기적 임피던스 특성을 이용한 생화학 센서용 전극 개발 연구)

  • So, Dae-Sup;Huh, Hoon;Kim, Hee-Jin;Lee, Hai-Won;Kang, In-Pil
    • Applied Chemistry for Engineering
    • /
    • v.21 no.5
    • /
    • pp.495-499
    • /
    • 2010
  • To develop chemical and biosensors, this paper studies sensing characteristics of bulk carbon nanotube (CNT) electrodes by means of their electrical impedance properties due to their large surface area and excellence chemical absorptivity. The sensors were fabricated in the form of film and nano web style by using composite process for mass production. The bulk composite electrodes were fabricated with singlewall and multi-wall carbon nanotubes based on host polymers such as Nafion and PAN, using a solution-casting and an electrospinning technique. The resistance and the capacitance of electrodes were measured with LCR meter under the various amounts of buffer solution to study the electrical impedance change properties of them. On the experimental of sensor electrode, impedance characteristics of the composite electrode are affected by its host polymer and nanofiller and its sensing response showed saturated result after applying some amounts of buffer solution for test chemical. Especially, the capacitance values showed drastic changes while the resistance values only changed within few percent range. It is deduced that the ions in the solution penetrated and diffused into the electrodes surface changed the electrical properties of the electrodes much like a doping effect.

Color Stability of Bulk-Fill Resin Composites after Immersion in Different Media (다양한 용액에 따른 Bulk-fill 복합레진의 색조안정성 평가)

  • Kang, Sungkyoon;Song, Jihyun
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.46 no.4
    • /
    • pp.353-361
    • /
    • 2019
  • The aim of this study was to evaluate the color stability of bulk-fill and conventional resin composites with respect to different storage media and thickness of composites. Filtek™ Z250 and Filtek™ Z350XT were evaluated as conventional resin composites. Filtek™ Bulk-fill Posterior Restorative and Tetric® N-Ceram Bulk Fill were evaluated as bulk-fill resin composites. CIE L*a*b* values of baseline were measured after 24 hours of storage in distilled water, and each resin composite group was divided into three subgroups and stored in distilled water, red wine, and coffee media respectively. Again after 1, 7 and 28 days of immersion, color changes (ΔE*) were calculated using the CIE L*a*b* values. The greatest ΔE* was observed in red wine for all resin composites, and the mean color changes were ranked in the increasing order of distilled water, coffee, red wine. Filtek™ Z350XT exhibited the greatest color change in all media, followed by Filtek™ Bulk-fill Posterior Restorative. Filtek™ Z250 and Tetric® N-Ceram Bulk Fill followed with similar mean color change values. According to the 2 different thicknesses of 2 mm and 4 mm of bulk-fill resin composites, there was no thickness-related difference on color changes.

Effects of Metalloid Elements on the Mechanical Properties of Fe-Based Bulk Amorphous Alloys

  • Kim, Yongchan;Hwang, Byoungchul
    • Korean Journal of Materials Research
    • /
    • v.26 no.12
    • /
    • pp.671-675
    • /
    • 2016
  • In this study, the glass-forming ability and mechanical properties of newly developed Fe-Mn-Cr-Mo-B-C-P-Si-Al bulk amorphous alloys were investigated, and metalloid elements such as B, C, and P were found to have a strong influence on the properties of the Fe-based amorphous alloys. When the total metalloid content (B, C, and P) is less than 5 %, only the crystal phase is formed, but the addition of more than 10 % metalloid elements enhances the glass forming ability. In particular, the alloys with 10 % metalloid content exhibit the best combination of very high compressive strength (~2.8 GPa) and superior fracture elongation (~30 %) because they consist of crystal/amorphous composite phases.