• Title/Summary/Keyword: Bulk Temperature

Search Result 1,305, Processing Time 0.029 seconds

Growth of ZnS nanocluster thin films by growth technique and investigation of structural and optical properties (용액성장법(Solution growth technique)에 의한 ZnS nano 입자 박막성장 및 구조적, 광학적 특성)

  • 이종원;임상철;곽만석;박인용;김선태;최용대
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.10 no.3
    • /
    • pp.199-204
    • /
    • 2000
  • In this study, the ZnS nanosized thin films that could be used for fabrication of blue light-emitting diodes, electro-optic modulators, and n-window layers of solar cells were grown by the solution growth technique (SGT), and their structural and optical properties were examined. Based on these results, the quantum size effects of ZnS were systematically investigated. Governing factors related to the growth condition were the concentration of precursor solution, growth temperature, concentration of aq. ammonia, and growth duration. X-ray diffraction patterns showed that the ZnS thin film obtained in this study had the cubic structure ($\beta$-ZnS). When the growth temperature was $75^{\circ}C$, the surface morphology and the grain size uniformity were the best. The energy band gaps of samples were determined from the optical transmittance valued, and were shown to vary from 3.69 eV to 3.91 eV. These values were substantially higher than 3.65 eV of bulk ZnS, demonstrating that the quantum size effect of SGT grown ZnS is remarkable. Photoluminescence (PL) peaks were observed at the positions corresponding to the lower energy than that to energy band gap, illustrating that the surface states were induced by the ultra-fineness of grains in ZnS films. Particularly, for the first time, it is reported for the SGT grown ZnS that the PL peaks were shifted depending on the grain size.

  • PDF

Electrical and mechanical properties of NiO doped Pb(Ni$_{1}$3/Nb$_{2}$3/)O$_3$-PbTiO$_3$-PbZrO$_3$-ceramics (NiO-Doped Pb(Ni$_{1}$3/Nb$_{2}$3/)O$_3$-PbTiO$_3$-PbZr$_3$-O세라믹스의 전기 및 기계적 특성에 관한 연구)

  • 나은상;김윤호;최성철
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.10 no.3
    • /
    • pp.245-251
    • /
    • 2000
  • Dielectric properties, piezoelectric properties and mechanical properties of NiO-doped Pb($(Ni_{1/3}Nb_{2/3})O_3-PbTiO_3-PbZrO_3$ ceramics were investigated. Powders, prepared by columbite precursor method, were cold pressed and sintered at temperature ranging from $1100^{\circ}C$ to $1250^{\circ}C$. Dielectric constant and piezoelectric constant increased with amount of NiO up to 1 mol% and then decreased with further addition of NiO. It seems that NiO acts as a sintering aid at the sintering temperatures of $1150^{\circ}C$. When the samples were sintered at temperature above $1200^{\circ}C$, however, both dielectric constant and electromechanical coupling factor decreased and mechanical quality coefficient increased with addition of NiO. Hardness and fracture toughness of PNN-PT-PZ increased with addition of NiO up to 1 mol%, and then decreased slightly with further addition of NiO. These results showed that dielectric properties, piezoelectric properties and mechanical properties of PNN-PT-PZ system seemed to be closely related with microstructural factors such as grain size, bulk density and the amount of second phase.

  • PDF

A Comparison of Laser Flash and the Divided-bar Methods of Measuring Thermal Conductivity of Rocks (암석 열전도도 측정을 위한 Laser Flash Method와 Divided-bar Method 비교)

  • Oh, Jae-Ho;Kim, Hyoung-Chan;Park, Jeong-Min
    • Economic and Environmental Geology
    • /
    • v.44 no.5
    • /
    • pp.387-397
    • /
    • 2011
  • In this study, we conducted the study of the merits and demerits of the laser flash and the divided-bar methods for measuring the thermal conductivity of rocks and investigated applicability of the divided-bar apparatus which was developed by KIGAM. The laser flash method can measure thermal diffusivity, specific heat capacity, and thermal conductivity of rocks with even small thickness (< ~3 mm) in the high temperature range($25-200^{\circ}C$) in non-contact mode. For the laser flash method, samples must be uniform and homogeneous. In the case of the divided-bar method, the apparatus measures only thermal conductivity of rock samples at the room temperature. We measured thermal conductivities of 12 rock samples with low density and high porosity using two methods. In the laser flash method, there exist potential errors caused by the effect of pulse dispersion and reflection by various minerals and porosity in rock samples; the difference in thermal conductivity values measured on the front surface and the opposite surface ranges from 0.001 to 0.140 W/mK with the standard deviation of 0.003~0.089 W/mK, which seems to be caused by heterogeneity of rock samples. On the contrary, the divided-bar apparatus shows stable thermal conductivity measurements and relatively small measurement errors; the difference in thermal conductivity values, just as we applied to the laser frash method, is 0.001~0.016 W/mK with the standard deviation 0.001~0.034 W/mK. In turn, the divided-bar method can be applied to more thick samples that are more representative of bulk thermal conductivity.

Synthesis and Biocompatibility of the Hydroxyapatite Ceramic Composites from Tuna Bone(I) - The Sintering Properties of Hydroxyapatite and Hydroxyapatite- Containing Wollastonite Crushed with Dry Milling Process - (참치 뼈를 이용한 Hydroxyapatite 세라믹 복합체의 합성 및 생체 친화성(제1보)-건식법으로 분쇄한 Hydroxyapatite 및 Wollastonite가 첨가된 소결체의 특성-)

  • Kim, Se-Kwon;Lee, Chang-Kook;Byun, Hee-Guk;Jeon, You-Jin;Lee, Eung-Ho;Choi, Jin-Sam
    • Applied Chemistry for Engineering
    • /
    • v.8 no.6
    • /
    • pp.994-999
    • /
    • 1997
  • The sintering properties of hydroxyapatite isolated from tuna bone and hydroxyapatite-containing wollastonite sintered by solid-state reaction was investigated. As the sinterability of hydroxyapatite dependent upon the particle size by dry milling, it showed a sintering. But the hydroxyapatite-containing wollastonite was appeared good sinterability. On X-ray measurements, the major phases of hydroxyapatite-containing wollastonite by solid state reaction at $1250^{\circ}C$ were identified as hydroxyapatite and pseudowollastonite(${\alpha}-CaSiO_3$). And the phases appeared as whitlockite [$Ca_3(PO_4)_2$] by decomposition of hydroxyapatite at higher temperature above $1250^{\circ}C$. The shapes of microstructure on SEM images changed from porous to dense bulk by elevating temperature. The mean bending strength of hydroxyapatite-containing wollastonite sintered by solid-state reaction at $1300^{\circ}C$ was about 18 MPa, it was close to the cancellous bone's maximum strength, 20 MPa.

  • PDF

Synthesis and Characterization of Poly(L-lactide)(L-PLA), Poly(D-lactide)(D-PLA) and Stereocomplex-poly(lactide)(PLA) (L-폴리락타이드, D-폴리락타이드의 활성과 입체복합체 폴리락타이드의 제조 및 특성연구)

  • Kim, Ji-Hyun;JeGal, Jong-Geon;Song, Bong-Keun;Shin, Chae-Ho
    • Polymer(Korea)
    • /
    • v.35 no.1
    • /
    • pp.52-59
    • /
    • 2011
  • L-PLA or D-PLA was synthesized in bulk at $140^{\circ}C$ by ring opening polymerization(ROP) of L-lactide or D-lactide as a monomer using tin(II) octoate and lauryl alcohol as a catalyst and an initiator with changing the amounts of catalyst(0.25~1.0 wt%) and initiator(0.l~0.5 wt%). And stereocomplex-PLA was prepared by L-PLA/D-PLA having a wide range of molecular weight(30000~90000 g/mol) and L-PLA/D-PLA blends having different mixing ratio ($X_D$). The melting temperature. thermal degradation temperature and thermal stability of stereocomplex-PLA were higher than those of homopolymers(L-PLA, D-PLA). We supposed that these improvements arose from a strong interaction between L-PLA and D-PLA. The improved mechanical properties and changes in morphology of LPLA/D-PLA blends were compared to those of homopolymers(L-PLA, D-PLA).

Effect of CdTe Deposition Conditions by Close spaced Sublimation on Photovoltaic Properties of CdS/CdTe Solar Cells (CdTe박막의 근접승화 제조조건에 따른 CdS/CdTe 태양전지의 광전압 특성)

  • Han, Byung-Wook;Ahn, Jin-Hyung;Ahn, Byung-Tae
    • Korean Journal of Materials Research
    • /
    • v.8 no.6
    • /
    • pp.493-498
    • /
    • 1998
  • CdTe films were deposited by close spaced sublimation with various substrate temperatures, cell areas, and thicknesses of CdTe and ITO layers and their effects on the CdS/CdTe solar cells were investigated. The resistivity of CdTe layers employed in this study was 3$\times$ $10^{4}$$\Omega$cm For constant substrate temperature the optimum substrate ternperature for CdTe deposition was $600^{\circ}C$. To obtain larger grain size and more compact microstructure, CdTe film was initially deposited at 62$0^{\circ}C$, and then deposited at 54$0^{\circ}C$. The CdTe film was annealed at 62$0^{\circ}C$ and $600^{\circ}C$ sequentially to maintain the CdTe film quality. The photovoitaic cell efficiency improved by the "two-wave" process. For constant substrate temperature, the optimum thickness for CdTe was 5-6$\mu m$. Above 6$\mu m$ CdTe thickness, the bulk resistance of CdTe film degraded the cell performance. As the cell area increased the $V_{oc}$ remained almost constant, while $J_{sc}$ and FF strongly decreased because of the increase of lateral resistance of the ITO layer. The optimum thickness of the ITa layer in this study was 300~450nm. In this experiment we obtained the efficiency of 9.4% in the O.5cm' cells. The series resistance of the cell should be further reduced to increase the fill factor and improve the efficiency.

  • PDF

Effect of modifiers on the properties of glass-ceramics containing coal bottom ash (석탄 바닥재가 포함된 결정화 유리의 특성에 미치는 수식제의 영향)

  • Kang, Seung-Gu
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.20 no.1
    • /
    • pp.53-57
    • /
    • 2010
  • The influence of CaO addition on the crystallization temperature, crystal types, and microstructure of L-A-S ($Li_2O-Al_2O_3-SiO_2$) glass-ceramics system fabricated from a coal bottom ash, produced at thermal power plant, was studied. The glass transition and crystallization temperatures were shifted to the higher temperature position with increasing CaO content in a non-isothermal analysis using a DTA. The major crystalline phases of L-A-S glass-ceramics system produced were identified as ${\beta}$-spodumene ($LiAlSi_2O_6$) and eucryptite ($LiAlSiO_4$). The glass-ceramics showed a bulk and surface crystallization behavior at a time. With increasing CaO content, the ${\beta}$-spodumene peak in XRD increased and some CaO-related phases were formed. The surface crystal grown from the exterior to the center in glass-ceramics showed various shapes by amount of CaO added. Some cracks were generated at the glass-ceramics containing CaO above 9 wt% due to the mismatch of thermal expansion coefficients between a ${\beta}$-spodumene and CaO-related crystal phases.

Error Characteristics of Satellite-observed Sea Surface Temperatures in the Northeast Asian Sea (북동아시아 해역에서 인공위성 관측에 의한 해수면온도의 오차 특성)

  • Park, Kyung-Ae;Sakaida, Futoki;Kawamura, Hiroshi
    • Journal of the Korean earth science society
    • /
    • v.29 no.3
    • /
    • pp.280-289
    • /
    • 2008
  • An extensive set of both in-situ and satellite data regarding oceanic sea surface temperatures in Northeast Asian seas, collected over a 10-year period, was collocated and surveyed to assess the accuracy of satellite-observed sea surface temperatures (SST) and investigate the characteristics of satellite measured SST errors. This was done by subtracting insitu SST measurements from multi-channel SST (MCSST) measurements. 845 pieces of collocated data revealed that MCSST measurements had a root-mean-square error of about 0.89$^{\circ}C$ and a bias error of about 0.18$^{\circ}C$. The SST errors revealed a large latitudinal dependency with a range of $\pm3^{\circ}C$ around 40$^{\circ}N$, which was related to high spatial and temporal variability from smaller eddies, oceanic currents, and thermal fronts at higher latitudes. The MCSST measurements tended to be underestimated in winter and overestimated in summer when compared to in-situ measurements. This seasonal dependency was discovered from shipboard and moored buoy measurements, not satellite-tracked surface drifters, and revealed the existence of a strong vertical temperature gradient within a few meters of the upper ocean. This study emphasizes the need for an effort to consider and correct the significant skin-bulk SST difference which arises when calculating SST from satellite data.

Characterization of SiC nanowire synthesize by Thermal CVD

  • Jeong, Min-Uk;Kim, Min-Guk;Song, U-Seok;Jeong, Dae-Seong;Choe, Won-Cheol;Park, Jong-Yun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.74-74
    • /
    • 2010
  • One-dimensional nanosturctures such as nanowires and nanotube have been mainly proposed as important components of nano-electronic devices and are expected to play an integral part in design and construction of these devices. Silicon carbide(SiC) is one of a promising wide bandgap semiconductor that exhibits extraordinary properties, such as higher thermal conductivity, mechanical and chemical stability than silicon. Therefore, the synthesis of SiC-based nanowires(NWs) open a possibility for developing a potential application in nano-electronic devices which have to work under harsh environment. In this study, one-dimensional nanowires(NWs) of cubic phase silicon carbide($\beta$-SiC) were efficiently produced by thermal chemical vapor deposition(T-CVD) synthesis of mixtures containing Si powders and hydrocarbon in a alumina boat about $T\;=\;1400^{\circ}C$ SEM images are shown that the temperature below $1300^{\circ}C$ is not enough to synthesis the SiC NWs due to insufficient thermal energy for melting of Si Powder and decomposition of methane gas. However, the SiC NWs are produced over $1300^{\circ}C$ and the most efficient temperature for growth of SiC NWs is about $1400^{\circ}C$ with an average diameter range between 50 ~ 150 nm. Raman spectra revealed the crystal form of the synthesized SiC NWs is a cubic phase. Two distinct peaks at 795 and $970\;cm^{-1}$ over $1400^{\circ}C$ represent the TO and LO mode of the bulk $\beta$-SiC, respectively. In XRD spectra, this result was also verified with the strongest (111) peaks at $2{\theta}=35.7^{\circ}$, which is very close to (111) plane peak position of 3C-SiC over $1400 ^{\circ}C$ TEM images are represented to two typical $\beta$-SiC NWs structures. One is shown the defect-free $\beta$-SiC nanowire with a (111) interplane distance with 0.25 nm, and the other is the stacking-faulted $\beta$-SiC nanowire. Two SiC nanowires are covered with $SiO_2$ layer with a thickness of less 2 nm. Moreover, by changing the flow rate of methane gas, the 300 sccm is the optimal condition for synthesis of a large amount of $\beta$-SiC NWs.

  • PDF

Effects of Mulching Practices on Soil Temperature and Soil Physical Properties (Mulching방법별(方法別) 토양온도(土壤溫度)와 토양물리성(土壤物理性) 변화(變化))

  • Jung, Pil-Kyun;Lee, Kwang-Seek;Ko, Mun-Hwan;Um, Ki-Tae;Ha, Ho-Seong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.18 no.4
    • /
    • pp.366-372
    • /
    • 1985
  • Soil temperatures and soil physical properties were investigated in order to better understand the effects of mulchings in the red pepper field. The red pepper was planted in the lysimeter installed at the Yesan sandy loam with 20% slope and 10cm slope length. The results were summarized as follows: 1. Average soil temperatures at 10cm and 20cm depth in vinyl mulching plots were $1.6^{\circ}C$ and $1.1^{\circ}C$ higher than those of control, respectively. However, the average soil temperatures in rice straw mulching plots were relatively lower than those of control during the growing season. 2. The greatest diurnal fluctuation of soil temperature was found at the vinyl mulching plots and it was decreased with increasing soil depth. 3. The calculated thermal diffusivities were 0.011, 0.009 and $0.007cm^2/sec$ for the vinyl mulching, control and straw mulching, respectively. 4. Soil losses were 103kg/10a for the vinyl mulching and 36kg/10a for the straw mulching which were nearly negligible as compared to the control. 5. Soil physical properties such as bulk density, hardness and water content were significantly improved by the vinyl and straw mulchings.

  • PDF