• 제목/요약/키워드: Bulk Materials

검색결과 1,435건 처리시간 0.029초

방전 플라즈마 소결법을 이용한 Al-Ni-Co-Y 벌크 비정질 합금의 제조 (Synthesis of Al-Ni-Co-Y Bulk Metallic Glass fabricated by Spark Plasma Sintering)

  • 이정표;이진규
    • 한국분말재료학회지
    • /
    • 제30권1호
    • /
    • pp.41-46
    • /
    • 2023
  • In this study, an Al82Ni7Co3Y8 (at%) bulk metallic glass is fabricated using gas-atomized Al82Ni7Co3Y8 metallic glass powder and subsequent spark plasma sintering (SPS). The effect of powder size on the consolidation of bulk metallic glass is considered by dividing it into 5 ㎛ or less and 20-45 ㎛. The sintered Al82Ni7Co3Y8 bulk metallic glasses exhibit crystallization behavior and crystallization enthalpy similar to those of the Al82Ni7Co3Y8 powder with 5 ㎛ or less and it is confirmed that no crystallization occurred during the sintering process. From these results, we conclude that the Z-position-controlled spark plasma sintering process, using superplastic deformation by viscous flow in the supercooled liquid-phase region of amorphous powder, is an effective process for manufacturing bulk metallic glass.

Fabrication of isotropic bulk graphite using artificial graphite scrap

  • Lee, Sang-Min;Kang, Dong-Su;Kim, Woo-Seok;Roh, Jea-Seung
    • Carbon letters
    • /
    • 제15권2호
    • /
    • pp.142-145
    • /
    • 2014
  • Isotropic synthetic graphite scrap and phenolic resin were mixed, and the mixed powder was formed at 300 MPa to produce a green body. New bulk graphite was produced by carbonizing the green body at $700^{\circ}C$, and the bulk graphite thus produced was impregnated with resin and re-carbonized at $700^{\circ}C$. The bulk density of the bulk graphite was $1.29g/cm^3$, and the porosity of the open pores was 29.8%. After one impregnation, the density increased to $1.44g/cm^3$ while the porosity decreased to 25.2%. Differences in the pore distribution before and after impregnation were easily confirmed by observing the microstructure. In addition, by using an X-ray diffractometer, the degrees-of-alignment (Da) were obtained for one side perpendicular to the direction of compression molding of the bulk graphite (the "top-face"), and one side parallel to the direction of compression molding (the "side-face"). The anisotropy ratio calculated from the Da-values obtained was 1.13, which indicates comparatively good isotropy.

벌크화물용 포장용기의 최적 설계(I)-알고리즘 개발 (Optimum Design of Packaging Container for Bulk Materials(I)-Algorithm Development)

  • 박종민;권순구
    • 한국포장학회지
    • /
    • 제6권1호
    • /
    • pp.1-11
    • /
    • 2000
  • In optimum design of packaging container for bulk materials, minimum board area, compression performance and distribution efficiency must be considered. In this study, mathematical models for minimum board area (RMA), compression strength (CS) and maximum compression strength per unit board area (MCSA) of container as algorithm for optimum design of packaging conatiner for bulk materials were developed as follows : RMA=f(V,D), ${\alpha}_{RMA}=f(V,D)$, MCSA=f(V,D), and ${\alpha}_{MCSA}=f(V,D)$. In order to develop these models, compression test according to various dimensions of container and response surface analysis for minimum board area, compression strength, and maximum compression strength per unit board area of container were carried out. In developed models, volume and depth of container were principal independent variables. Through the verified results for these models, optimum design of packaging container on the design conditions and limit conditions was possible. These models might be used in developing optimum design software of packaging container for bulk materials.

  • PDF

$Cu_{54}Ni_{6}Zr_{22}Ti_{18}$ 벌크비정질 합금의 Nd:YAG 레이저 점용접 특성 (Characteristics of the Nd:YAG laser Spot Welding in $Cu_{54}Ni_{6}Zr_{22}Ti_{18}$ Bulk Metallic Glass Alloy)

  • 김종현;이제훈;신승용;배정찬;이창희
    • 한국레이저가공학회지
    • /
    • 제8권2호
    • /
    • pp.13-20
    • /
    • 2005
  • Weldability is largely dependent on the phase evolution and the microstructure of the weld. For the weldability of the $Cu_{54}Ni_6Zr_{22}Ti_{18}$ bulk metallic glass, the crystallization affects the sensitivity of the weld to the brittle failure. In order to suppress the irreversible crystallization, Nd:YAG laser welding was chosen. The pulsed Nd:YAG laser was irradiated onto the BMG plate and the effects of the pulse shape [peak power intensity and pulse duration time] on the crystallinity were evaluated.

  • PDF

동적재료모델에 의한 벌크 비정질 금속의 판재성형성에 대한 고찰 (Dynamic Materials Model-Based Study on the Formability of Bulk Metallic Glass Sheets)

  • 방원규;이광석;안상호;장영원
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.173-176
    • /
    • 2002
  • Viscoplastic deformation and sheet forming behavior of multicomponent Zr-based bulk metallic glass alloy has been investigated. From a series of mechanical test results, basic processing maps based on Dynamic Materials Model have been constructed to establish feasible forming conditions. Stamping in laboratory scale was then performed at the various stroke speeds and temperatures using a hydraulic press. Failure in macroscopic level was examined to check the validity of constructed processing maps.

  • PDF

벌크화물용 포장용기의 최적 설계(II)-프로그램 개발 (Optimum Design of Packaging Container for Bulk Materials(II)-Computer Program Development)

  • 박종민;권순홍;정성원
    • 한국포장학회지
    • /
    • 제6권1호
    • /
    • pp.12-18
    • /
    • 2000
  • If optimum design technique is applied in the design of packaging container for bulk materials, merits on the side of not only economic and compression performance but distribution efficiency are expected. In this study, on the ground of the optimum models for required board area and compression strength performance, optimum design program having faculties of outward and inward optimum design and information design was developed. This program was composed of input module, output module, database and management module, and calculation module. Though the packaging specifications ars same, requied board area, board composition and cost of container were greatly different according to exterior packaging conditions. Also, about 12% in weight of container was lighter, and about $13{\sim}17%$ in cost of container was reduced when the program was applied for 2 kinds of bulk materials.

  • PDF

Nanocrystallization of Cu-Based Bulk Glassy Alloys upon Annealing

  • Pengjun, Cao;Dong, Jiling;Haidong, Wu;Peigeng, Fan;Anruo, Zhou
    • Applied Microscopy
    • /
    • 제46권1호
    • /
    • pp.32-36
    • /
    • 2016
  • The Cu-based bulk glassy alloys in Cu-Zr-Ti-Ni systems were prepared by means of copper mold casting. The Cu-based bulk glassy alloys samples were tested by X-ray diffractomer (XRD), differential scanning calorimeter, scanning electron microscopy (SEM), Instron testing machine and Vickers hardness instruments. The result indicated that the prepared Cu-Zr-Ti-Ni alloys were bulk glassy alloys. The temperature interval of supercooled liquid region (${\Delta}T_x$) was about 45.48 to 70.98 K for the Cu-Zr-Ti-Ni alloy. The Vickers hardness was up to 565 HV for the $Cu_{50}Zr_{25}Ti_{15}Ni_{10}$ bulk glassy alloy. The $Cu_{50}Zr_{25}Ti_{15}Ni_{10}$ bulk glassy alloys were annealed in order to obtain nanocrystals. The results showed that the Vickers hardness was raise up to 630 HV from 565 HV. As shown in XRD results, the amorphous alloys changed to nanocrystals, which were $Cu_8Zr_3$, $Cu_3Ti_2$ and CuZr, improved the hardness. The SEM analysis showed that the compression fractured morphology of amorphous alloys was brittle fracture, and the fracture morphology after annealing was ductile fracture. This proved that annealing of amorphous to nanocrystals can improve the plasticity and toughness of amorphous alloys.

Comparison of mechanical properties of a new fiber reinforced composite and bulk filling composites

  • Abouelleil, Hazem;Pradelle, Nelly;Villat, Cyril;Attik, Nina;Colon, Pierre;Grosgogeat, Brigitte
    • Restorative Dentistry and Endodontics
    • /
    • 제40권4호
    • /
    • pp.262-269
    • /
    • 2015
  • Objectives: The aim of this study was to evaluate the mechanical and physical properties of a newly developed fiber reinforced dental composite. Materials and Methods: Fiber reinforced composite EverX Posterior (EXP, GC EUROPE), and other commercially available bulk fill composites, including Filtek Bulk Fill (FB, 3M ESPE), SonicFill (SF, Kerr Corp.), SureFil (SDR, Dentsply), Venus Bulk Fill (VB, HerausKultzer), Tetric evoceram bulk fill (TECB, Ivoclar Vivadent), and Xtra Base (XB, Voco) were characterized. Composite samples light-cured with a LED device were evaluated in terms of flexural strength, flexural modulus (ISO 4049, n = 6), fracture toughness (n = 6), and Vickers hardness (0, 2, and 4 mm in depth at 24 hr, n = 5). The EXP samples and the fracture surface were observed under a scanning electron microscopy. Data were statistically analyzed using one-way ANOVA and unpaired t-test. Results: EXP, FB, and VB had significantly higher fracture toughness value compared to all the other bulk composite types. SF, EXP, and XB were not statistically different, and had significantly higher flexural strength values compared to other tested composite materials. EXP had the highest flexural modulus, VB had the lowest values. Vickers hardness values revealed SF, EXP, TECB, and XB were not statistically different, and had significantly higher values compared to other tested composite materials. SEM observations show well dispersed fibers working as a reinforcing phase. Conclusions: The addition of fibers to methacrylate-based matrix results in composites with either comparable or superior mechanical properties compared to the other bulk fill materials tested.

비행입자의 열 에너지에 따른 NiTiZrSiSn 벌크 비정질 분말의 적층 거동 (Effect of Thermal Energy of In-Flight Particles on Impacting Behavior for NiTiZrSiSn Bulk Metallic Glass during Kinetic Spraying)

  • 윤상훈;김수기;이창희
    • Journal of Welding and Joining
    • /
    • 제25권3호
    • /
    • pp.37-44
    • /
    • 2007
  • Mechanical and thermomechanical properties of the bulk metallic glass (BMG) are so unique that the deformation behavior is largely dependent on the temperature and the strain rate. Impacting behavior of NiTiZrSiSn bulk metallic glass powder during kinetic spraying was investigated in this study. Considering the impact behavior of the BMG, the kinetic spraying system was modified and attached the powder preheating system to make the transition from the inhomogeneous deformation to the homogeneous deformation of impacting BMG particle easy BMG splat formation is considered from the viewpoint of the adiabatic shear instability. It is suggested that the impact behavior of bulk metallic glass particle is determined by the competition between fracture and deformation. The bonding of the impacting NiTiZrSiSn bulk amorphous particle was primarily caused by the temperature-dependent deformation and fracture (local liquid formation) behavior.