DOI QR코드

DOI QR Code

Comparison of mechanical properties of a new fiber reinforced composite and bulk filling composites

  • Abouelleil, Hazem (Laboratoire des Multimateriaux et Interfaces, UMR CNRS 5615, Universite Lyon1) ;
  • Pradelle, Nelly (Laboratoire des Multimateriaux et Interfaces, UMR CNRS 5615, Universite Lyon1) ;
  • Villat, Cyril (Laboratoire des Multimateriaux et Interfaces, UMR CNRS 5615, Universite Lyon1) ;
  • Attik, Nina (Laboratoire des Multimateriaux et Interfaces, UMR CNRS 5615, Universite Lyon1) ;
  • Colon, Pierre (Laboratoire des Multimateriaux et Interfaces, UMR CNRS 5615, Universite Lyon1) ;
  • Grosgogeat, Brigitte (Laboratoire des Multimateriaux et Interfaces, UMR CNRS 5615, Universite Lyon1)
  • Received : 2015.04.02
  • Accepted : 2015.06.30
  • Published : 2015.11.30

Abstract

Objectives: The aim of this study was to evaluate the mechanical and physical properties of a newly developed fiber reinforced dental composite. Materials and Methods: Fiber reinforced composite EverX Posterior (EXP, GC EUROPE), and other commercially available bulk fill composites, including Filtek Bulk Fill (FB, 3M ESPE), SonicFill (SF, Kerr Corp.), SureFil (SDR, Dentsply), Venus Bulk Fill (VB, HerausKultzer), Tetric evoceram bulk fill (TECB, Ivoclar Vivadent), and Xtra Base (XB, Voco) were characterized. Composite samples light-cured with a LED device were evaluated in terms of flexural strength, flexural modulus (ISO 4049, n = 6), fracture toughness (n = 6), and Vickers hardness (0, 2, and 4 mm in depth at 24 hr, n = 5). The EXP samples and the fracture surface were observed under a scanning electron microscopy. Data were statistically analyzed using one-way ANOVA and unpaired t-test. Results: EXP, FB, and VB had significantly higher fracture toughness value compared to all the other bulk composite types. SF, EXP, and XB were not statistically different, and had significantly higher flexural strength values compared to other tested composite materials. EXP had the highest flexural modulus, VB had the lowest values. Vickers hardness values revealed SF, EXP, TECB, and XB were not statistically different, and had significantly higher values compared to other tested composite materials. SEM observations show well dispersed fibers working as a reinforcing phase. Conclusions: The addition of fibers to methacrylate-based matrix results in composites with either comparable or superior mechanical properties compared to the other bulk fill materials tested.

Keywords

References

  1. Pallesen U, van Dijken JW, Halken J, Hallonsten AL, Hoigaard R. Longevity of posterior resin composite restorations in permanent teeth in Public Dental Health Service: a prospective 8 years follow up. J Dent 2013;41:297-306. https://doi.org/10.1016/j.jdent.2012.11.021
  2. Demarco FF, Correa MB, Cenci MS, Moraes RR, Opdam NJ. Longevity of posterior composite restorations: not only a matter of materials. Dent Mater 2012;28:87-101. https://doi.org/10.1016/j.dental.2011.09.003
  3. Sarrett DC. Clinical challenges and the relevance of materials testing for posterior composite restorations. Dent Mater 2005;21:9-20. https://doi.org/10.1016/j.dental.2004.10.001
  4. Cramer NB, Stansbury JW, Bowman CN. Recent advances and developments in composite dental restorative materials. J Dent Res 2011;90:402-416. https://doi.org/10.1177/0022034510381263
  5. Ferracane JL. Resin composite-state of the art. Dent Mater 2011;27:29-38. https://doi.org/10.1016/j.dental.2010.10.020
  6. Da Rosa Rodolpho PA, Donassollo TA, Cenci MS, Loguercio AD, Moraes RR, Bronkhorst EM, Opdam NJ, Demarco FF. 22-Year clinical evaluation of the performance of two posterior composites with different filler characteristics. Dent Mater 2011;27:955-963. https://doi.org/10.1016/j.dental.2011.06.001
  7. Walter R. Critical appraisal: bulk-fill flowable composite resins. J Esthet Restor Dent 2013;25:72-76. https://doi.org/10.1111/jerd.12011
  8. Moorthy A, Hogg CH, Dowling AH, Grufferty BF, Benetti AR, Fleming GJ. Cuspal deflection and microleakage in premolar teeth restored with bulk-fill flowable resinbased composite base materials. J Dent 2012;40:500-505. https://doi.org/10.1016/j.jdent.2012.02.015
  9. Ilie N, Bucuta S, Draenert M. Bulk-fill resin-based composites: an in vitro assessment of their mechanical performance. Oper Dent 2013;38:618-625. https://doi.org/10.2341/12-395-L
  10. Leprince JG, Palin WM, Vanacker J, Sabbagh J, Devaux J, Leloup G. Physico-mechanical characteristics of commercially available bulk-fill composites. J Dent 2014;42:993-1000. https://doi.org/10.1016/j.jdent.2014.05.009
  11. Ilie N, Hickel R, Valceanu AS, Huth KC. Fracture toughness of dental restorative materials. Clin Oral Investig 2012;16:489-498. https://doi.org/10.1007/s00784-011-0525-z
  12. El-Safty S, Silikas N, Watts DC. Creep deformation of restorative resin-composites intended for bulk-fill placement. Dent Mater 2012;28:928-935. https://doi.org/10.1016/j.dental.2012.04.038
  13. Alshali RZ, Silikas N, Satterthwaite JD. Degree of conversion of bulk-fill compared to conventional resincomposites at two time intervals. Dent Mater 2013;29:e213-e217. https://doi.org/10.1016/j.dental.2013.05.011
  14. Van Ende A, De Munck J, Van Landuyt KL, Poitevin A, Peumans M, Van Meerbeek B. Bulk-filling of high C-factor posterior cavities: effect on adhesion to cavitybottom dentin. Dent Mater 2013;29:269-277. https://doi.org/10.1016/j.dental.2012.11.002
  15. Roggendorf MJ, Kramer N, Appelt A, Naumann M, Frankenberger R. Marginal quality of flowable 4-mm base vs. conventionally layered resin composite. J Dent 2011;39:643-647. https://doi.org/10.1016/j.jdent.2011.07.004
  16. Poggio C, Dagna A, Chiesa M, Colombo M, Scribante A. Surface roughness of flowable resin composites eroded by acidic and alcoholic drinks. J Conserv Dent 2012;15:137-140. https://doi.org/10.4103/0972-0707.94581
  17. Finan L, Palin WM, Moskwa N, McGinley EL, Fleming GJ. The influence of irradiation potential on the degree of conversion and mechanical properties of two bulk-fill flowable RBC base materials. Dent Mater 2013;29:906-912. https://doi.org/10.1016/j.dental.2013.05.008
  18. Garoushi S, Sailynoja E, Vallittu PK, Lassila L. Physical properties and depth of cure of a new short fiber reinforced composite. Dent Mater 2013;29:835-841. https://doi.org/10.1016/j.dental.2013.04.016
  19. Heintze SD, Zimmerli B. Relevance of in vitro tests of adhesive and composite dental materials, a review in 3 parts. Part 1: approval requirements and standardized testing of composite materials according to ISO specifications. Schweiz Monatsschr Zahnmed 2011;121:804-816.
  20. Alander P, Lassila LV, Vallittu PK. The span length and cross-sectional design affect values of strength. Dent Mater 2005;21:347-353. https://doi.org/10.1016/j.dental.2004.05.009
  21. Czasch P, Ilie N. In vitro comparison of mechanical properties and degree of cure of bulk fill composites. Clin Oral Investig 2013;17:227-235. https://doi.org/10.1007/s00784-012-0702-8
  22. Xu HH, Schumacher GE, Eichmiller FC, Peterson RC, Antonucci JM, Mueller HJ. Continuous-fiber preform reinforcement of dental resin composite restorations. Dent Mater 2003;19:523-530. https://doi.org/10.1016/S0109-5641(02)00100-8
  23. Garoushi S, Vallittu PK, Lassila LV. Short glass fiber reinforced restorative composite resin with semiinter penetrating polymer network matrix. Dent Mater 2007;23:1356-1362. https://doi.org/10.1016/j.dental.2006.11.017
  24. Petersen RC. Discontinuous fiber-reinforced composites above critical length. J Dent Res 2005;84:365-370. https://doi.org/10.1177/154405910508400414
  25. Leprince JG, Leveque P, Nysten B, Gallez B, Devaux J, Leloup G. New insight into the "depth of cure" of dimethacrylate-based dental composites. Dent Mater 2012;28:512-520. https://doi.org/10.1016/j.dental.2011.12.004
  26. Flury S, Hayoz S, Peutzfeldt A, Husler J, Lussi A. Depth of cure of resin composites: is the ISO 4049 method suitable for bulk fill materials? Dent Mater 2012;28:521-528. https://doi.org/10.1016/j.dental.2012.02.002
  27. Galvao MR, Caldas SG, Bagnato VS, de Souza Rastelli AN, de Andrade MF. Evaluation of degree of conversion and hardness of dental composites photo-activated with different light guide tips. Eur J Dent 2013;7:86-93.
  28. Polydorou O, Manolakis A, Hellwig E, Hahn P. Evaluation of the curing depth of two translucent composite materials using a halogen and two LED curing units. Clin Oral Investig 2008;12:45-51. https://doi.org/10.1007/s00784-007-0142-z
  29. Yap AU, Seneviratne C. Influence of light energy density on effectiveness of composite cure. Oper Dent 2001;26:460-466.

Cited by

  1. Letter to the Editor, “Dentin Bonding Testing Using a Mini-interfacial Fracture Toughness Approach” vol.95, pp.8, 2016, https://doi.org/10.1177/0022034516651054
  2. Spot-Bonding and Full-Bonding Techniques for Fiber Reinforced Composite (FRC) and Metallic Retainers vol.18, pp.10, 2017, https://doi.org/10.3390/ijms18102096
  3. Bond strength of fiber posts and short fiber-reinforced composite to root canal dentin following cyclic loading vol.31, pp.13, 2017, https://doi.org/10.1080/01694243.2016.1257261
  4. A comparative study of bulk-fill composites: degree of conversion, post-gel shrinkage and cytotoxicity vol.32, pp.0, 2018, https://doi.org/10.1590/1807-3107bor-2018.vol32.0017
  5. Short fiber-reinforced composite restorations: A review of the current literature vol.9, pp.3, 2018, https://doi.org/10.1111/jicd.12330
  6. Structural and mechanical properties of a giomer-based bulk fill restorative in different curing conditions vol.26, pp.0, 2018, https://doi.org/10.1590/1678-7757-2016-0662
  7. Properties of a New Nanofiber Restorative Composite vol.44, pp.1, 2019, https://doi.org/10.2341/17-304-L
  8. Load-bearing capacity of novel resin-based fixed dental prosthesis materials vol.37, pp.1, 2015, https://doi.org/10.4012/dmj.2016-367
  9. Physicochemical properties of discontinuous S2-glass fiber reinforced resin composite vol.37, pp.1, 2018, https://doi.org/10.4012/dmj.2017-078
  10. Physicomechanical and thermal analysis of bulk-fill and conventional composites vol.33, pp.None, 2019, https://doi.org/10.1590/1807-3107bor-2019.vol33.0008
  11. Fracture Resistance of Various Bulk-fill Composite Resins in Class II MOD Cavity on Premolars: An In Vitro Study vol.10, pp.3, 2015, https://doi.org/10.5005/jp-journals-10015-1637
  12. Effect of interface surface design on the fracture behavior of bilayered composites vol.127, pp.3, 2019, https://doi.org/10.1111/eos.12617
  13. Comparison of the fracture resistance of three different recent composite systems in large Class II mesio-occlusal distal cavities: An in vitro study vol.22, pp.3, 2015, https://doi.org/10.4103/jcd.jcd_225_18
  14. Bonding interface affects the load-bearing capacity of bilayered composites vol.38, pp.6, 2015, https://doi.org/10.4012/dmj.2018-304
  15. Restoration of a Nonvital Tooth with Fiber Reinforce Composite (Wallpapering Technique) vol.2020, pp.None, 2015, https://doi.org/10.1155/2020/9619787
  16. Influence of Bulk-fill Restoration on Polymerization Shrinkage Stress and Marginal Gap Formation in Class V Restorations vol.45, pp.4, 2015, https://doi.org/10.2341/19-062-l
  17. Cracked Tooth Syndrome Management Part 2: Integrating the Old with the New vol.47, pp.7, 2015, https://doi.org/10.12968/denu.2020.47.7.570
  18. Fracture strength of endodontically treated teeth restored with different fiber post and core systems vol.108, pp.4, 2015, https://doi.org/10.1007/s10266-020-00481-4
  19. Comparative Evaluation of Flexural Strength of Two Newer Composite Resin Materials: An in Vitro Study vol.21, pp.None, 2015, https://doi.org/10.1590/pboci.2021.071
  20. Comparative Evaluation of Mechanical Properties of Titanium Dioxide Nanoparticle Incorporated in Composite Resin as a Core Restorative Material vol.22, pp.6, 2015, https://doi.org/10.5005/jp-journals-10024-3105
  21. Analysis of marginal integrity in dentistry composite fillings with flow layer under compression test vol.84, pp.7, 2015, https://doi.org/10.1002/jemt.23700
  22. Microtensile Bond Strength, Marginal Leakage, and Antibacterial Effect of Bulk Fill Resin Composite with Alkaline Fillers versus Incremental Nanohybrid Composite Resin vol.15, pp.3, 2015, https://doi.org/10.1055/s-0040-1721310
  23. Polymerization Shrinkage of Short Fiber Reinforced Dental Composite Using a Confocal Laser Analysis vol.13, pp.18, 2021, https://doi.org/10.3390/polym13183088