• Title/Summary/Keyword: Bulk Material

Search Result 1,003, Processing Time 0.031 seconds

Thin Film Bulk Acoustic Resonators(FBAR) filters design Air-gap type using piezoelectric thin film (압전박막을 이용한 air-gap type FBAR 필터설계)

  • Jong, Jung-Youn;Kim, Yong-Chun;Kim, Sang-Jong;Kim, Kyung-Hwan;Yoon, Seok-Jin;Choi, Hyung-Wook
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.838-841
    • /
    • 2003
  • The aim of the study is to scrutinize the relationship between the area of resonance and insertion loss by analyzing the characteristics of 2-port resonator. This was done through designing an air-gap type Film Bulk Acoustic Resonator (FBAR) by using CAD model for the application of bandpass filter of high-frequency band with piezoelectric thin film. Moreover, through the design of ladder-type BPF, we were able to observe changes in bandwidth, resonation, out-of-band rejection depending on the number and area of resonator.

  • PDF

First-Principles Study on the Electronic Structure of Bulk and Single-Layer Boehmite

  • Son, Seungwook;Kim, Dongwook;Na-Phattalung, Sutassana;Ihm, Jisoon
    • Nano
    • /
    • v.13 no.12
    • /
    • pp.1850138.1-1850138.6
    • /
    • 2018
  • Two-dimensional (2D) or layered materials have a great potential for applications in energy storage, catalysis, optoelectronics and gas separation. Fabricating novel 2D or quasi-2D layered materials composed of relatively abundant and inexpensive atomic species is an important issue for practical usage in industry. Here, we suggest the layer-structured AlOOH (Boehmite) as a promising candidate for such applications. Boehmite is a well-known layer-structured material and a single-layer can be exfoliated from the bulk boehmite by breaking the interlayer hydrogen bonding. We study atomic and electronic band structures of both bulk and single-layer boehmite, and also obtain the single-layer exfoliation energy using first-principles calculations.

Characterization of Asbestos Content in Friable Sprayed-on Surface Material and Airborne Asbestos Concentrations in Buildings by TEM (전자현미경을 이용한 건물내 비고형 표면자재의 석면 오염 및 기중 석면농도 특성조사)

  • Yu, Sung Whan;Kim, Hyun Wook
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.6 no.2
    • /
    • pp.165-175
    • /
    • 1996
  • Fourteen(14) large commercial buildings located in Seoul with friable sprayed-on surface insulation material on ceiling were investigated for fiber types in bulk material and for airborne fiber concentrations in buildings by transmission electron microscopy (TEM) in order to compare the results with those by polarized light microscopy (PLM) and phase contrast microscopy (PCM). The results were as follows: 1. Chrysotile asbestos was found in one bulk sample out of total 14 bulk samples collected. Glass fiber and mineral wool were the two major constituents of the bulk samples. 2. The Na-Mg-Si-Ca-Fe-Al ratios of the EDX spectra which were normalized with the Si peak were 0-1.0-10-8.3-4.0-4.0 in mineral wool and 0-5-10-21-0-0 in chrysotile asbestos, respectively. 3. Airborne fiber concentrations were log-normalcy distributed and the geometric mean (geometric standard deviation) fiber concentrations by TEM in the underground parking lots and inside buildings were 0.0048 f/cc(1.93) and 0.0040 f/cc(2.27), respectively with no statistical difference. In the outdoor ambient air, statistically significantly lower concentration of 0.0018 f/cc(2.04) was measured. 4. The TEM/PCM ratios of airborne fiber concentrations ranged 0.5 - 2.0 for 80 % of airborne samples analyzed, end the regression equation between TEM and PCM was PCM=-0.2724+1.1355(TEM) with the coefficient of determination $R^2=0.52$. The results of this study confirmed that the sprayed-on surface insulation material found in some commercial buildings may possibly be contaminated with asbestos fiber. Since statistically significant relationship of fiber concentrations measured by PCM and TEM inside buildings and ambient air was found, previous results by PCM in ambient air could be used to estimate the ambient fiber concentrations in knowing the ratio of TEM/PCM.

  • PDF

A Study on Self-Unloading System (Self-Unloading System에 대한 소고)

  • H.J. Bae;W.J. Cha
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.31 no.4
    • /
    • pp.8-14
    • /
    • 1994
  • The aim of this paper is the introduction and investigation of the characteristics and outline of self-unloading systems from the bulk handling point of view. Some years of experiences from the building of self-unloading bulk carriers are described hereunder.

  • PDF

Electromagnetic Properties of Bulk High-Tc Superconductor (벌크형 초전도체의 전기자기적 특성)

  • Lee, Sang-Heon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.2
    • /
    • pp.111-114
    • /
    • 2017
  • In this research, the development of fabrication technique of bulk YBaCuO superconductors for application was studied. In fluence of $BaZrO_3$ addition on magnetization characteristics of thermal pyrolysis textured YBaCuO superconductor was investigated. Fine $BaZrO_3$ particle were dispersed within the textured YBaCuO matrix by means of the thermal pyrolysis processing. Magnetic levitation force for YBaCuO superconductors were obtained using Nd-B-Fe permanent magnet, at 77 K and at the magnetic field from 0 to 5.3 K gauss. In the unadded superconductor and 5 wt% $BaZrO_3$ addition, anomalous magnetization behavior, which is characterized by the intermediate magnetic field, was observed at 77 K. Critical current density was about few hundreds $A/cm^2$ and the magnetic characteristics increased slightly by addition of $BaZrO_3$ powder. Maximum magnetic force was obtained in the YBaCuO superconducting bulk with 3 wt.% $BaZrO_3$ addition.

Optimal design of an Wire-woven Bulk Kagome using taguchi method (다구찌법을 이용한 WBK(Wire-woven Bulk Kagome)의 최적설계)

  • Choi, Ji-Eun;Kang, Ki-Ju
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.13-19
    • /
    • 2008
  • A Wire-woven Bulk Kagome (WBK) is the new truss type cellular metal fabricated by assembling the helical wires in six directions. The WBK seems to be promising with respect to morphology, fabrication cost, and raw materials. In this paper, first, the geometric and material properties are defined as the main design parameters of the WBK considering the fact that the failure of WBK is caused by buckling of truss elements. Taguchi approach was used as statistical design of experiment(DOE) technique for optimizing the design parameters in terms of maximizing the compressive strength. Normalized specific strength is constant regardless of slenderness ratio even if material properties changed, while it increases gradually as the strainhardening coefficient decreases. Compressive strength of WBK dominantly depends on the slenderness ratio rather than one of the wire diameter, the strut length. Specifically the failure of WBK under compression by elastic buckling of struts mainly depended on the slenderness ratio and elastic modulus. However the failure of WBK by plastic failed marginally depended on the slenderness ratio, yield stress, hardening and filler metal area.

  • PDF

Comparison of Electrical Characteristics of SiGe pMOSFETs Formed on Bulk-Si and PD-SOI (Bulk-Si와 PD-SOI에 형성된 SiGe p-MOSFET의 전기적 특성의 비교)

  • Choi, Sang-Sik;Choi, A-Ram;Kim, Jae-Yeon;Yang, Jeon-Wook;Han, Tae-Hyun;Cho, Deok-Ho;Hwang, Yong-Woo;Shim, Kyu-Hwan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.6
    • /
    • pp.491-495
    • /
    • 2007
  • This paper has demonstrated the electrical properties of SiGe pMOSFETs fabricated on both bulk-Si and PD SOI substrates. Two principal merits, the mobility increase in strained-SiGe channel and the parasitic capacitance reduction of SOI isolation, resulted in improvements in device performance. It was observed that the SiGe PD SOI could alleviate the floating body effect, and consequently DIBL was as low as 10 mV/V. The cut-off frequency of device fabricated on PD SOI substrate was roughly doubled in comparison with SiGe bulk: from 6.7 GHz to 11.3 GHz. These experimental result suggests that the SiGe PD SOI pMOSFET is a promising option to drive CMOS to enhance performance with its increased operation frequency for high speed and low noise applications.

Mechanical Properties of YBCO Superconductors with Impregnation Materials (보강재를 첨가한 YBCO 초전도체의 기계적강도 변화)

  • Lee, Nam-Il;Jang, Gun-Eik;Lee, Sang-Heon;Kim, Chan-Jung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.247-248
    • /
    • 2006
  • Bulk YBCO 초전도체는 top-seeded melt-growth 방법으로 제조되었다. YBCO bulk는 Epoxy resin과 $AgNO_3$를 보강해 초전도체의 기계적 강도를 향상하고자 하였다. Epoxy resin은 보강 재료인 STYCAST 2850-FT와 경화제인 CATALYST 24LV 를 100:5 비율로 혼합하여 제조한 후 mould에 넣고 $66^{\circ}C$에서 2시간 열처리 하였다 (rotary pump로 진공 분위기 조성). $AgNO_3$$350^{\circ}C$에서 2시간, $450^{\circ}C$에서 1시간 열처리 하여 Ag와 $NO_3$의 분리 후 YBCO bulk에 Ag가 보강되도록 하였다. Epoxy resin 과 분리된 Ag는 YBCO bluk의 crack과 void에 침투되는 것을 SEM과 광학현미경을 통해 관찰할 수 있었다. Three point bending test를 이용하여 보강 전후의 YBCO bulk의 기계적 강도를 측정하였다. 보강 후의 YBCO bluk의 기계적 강도는 보강 전에 비해 향상된 결과를 확인할 수 있었고, Epoxy resin과 $AgNO_3$를 보강한 YBCO는 기계적 강도 향상에 높은 신뢰성을 보이고 있다.

  • PDF

Development of Large-sized YBCO High Temperature Superconductor Bulk Magnets and Actuator (대면적 YBCO 고온 초전도 벌크 자석 및 조작기 개발)

  • Han, Sang-Chul;Park, Byung-Jun;Jung, Se-Yong;Han, Young-Hee;Lee, Jong-Won
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.7
    • /
    • pp.450-455
    • /
    • 2015
  • For the practical application of a YBCO superconductor bulk, the superconductor bulk magnet with high magnetic field on a large area surface should be fabricated. To make this, YBCO single crystal bulks with fine $Y_2BaCuO_5$(Y211) particles have been prepared by the top-seed melt growth(TSMG) method with $YBa_2Cu_3O_x$, $Y_2O_3$, and $CeO_2$ mixing precursor. By using $Y_2O_3$ instead of $Y_2BaCuO_5$ as precursor, the manufacturing process became simpler and more economical. The microstructures, trapped field and critical current density of the various conditioned YBCO bulks have been observed, analyzed and measured. The different characteristic values of the several samples have been analyzed from the viewpoint of their microstructures. We have developed a $8{\times}12cm$ size superconductor bulk magnet, up to 3 T class, by using the 4 T class-high field superconducting magnetizer and confirmed the applicability of the transmission level circuit breakers by measuring the strength and speed of the superconductor bulk magnet actuator.

Effect of High-Energy Ball Milling on Thermoelectric Transport Properties in CoSb3 Skutterudite (고에너지 볼 밀링이 Skutterudite계 CoSb3의 열전 및 전하 전송 특성에 미치는 영향)

  • Nam, Woo Hyun;Meang, Eun-Ji;Lim, Young Soo;Lee, Soonil;Seo, Won-Seon;Lee, Jeong Yong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.12
    • /
    • pp.852-856
    • /
    • 2015
  • In this study, we investigate the effect of high-energy ball milling on thermoelectric transport properties in double-filled $CoSb_3$ skutterudite ($In_{0.2}Yb_{0.1}Co_4Sb_{12}$). $In_{0.2}Yb_{0.1}Co_4Sb_{12}$ powders are milled using high-energy ball milling for different periods of time (0, 5, 10, and 20 min), and the milled powders are consolidated into bulk samples by spark plasma sintering. Microstructure analysis shows that the high-energy ball milled bulk samples are composed of nano- and micro-grains. Because the filling fractions are reduced in the bulk samples due to the kinetic energy of the high-energy ball milling, the carrier concentration of the bulk samples decreases with the ball milling time. Furthermore, the mobility of the bulk samples also decreases with the ball milling time due to enhanced grain boundary scattering of electrons. Reduction of electrical conductivity by ball milling has a decisive effect on thermoelectric transport in the bulk samples, power factor decreases with the ball milling time.