• Title/Summary/Keyword: Built-In Sensor

Search Result 509, Processing Time 0.027 seconds

Development of 2-Axis Solar Tracker with BLDC Motor-Cylinder Actuator and Hall Sensor Feedback (BLDC 모터-실린더 구동, 홀센서 피드백 방식의 2축 태양광 추적장치 개발)

  • Lho, Tae-Jung;Lee, Seung-Hyeon;Park, Min-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.7
    • /
    • pp.2334-2340
    • /
    • 2010
  • Sun position computed by Michalsky shows maximum $1.5^{\circ}$, $0.88^{\circ}$ and 2 minutes differences in azimuth, altitude, and sunrise and sunset times respectively compared with Korean Almanac. The 2-axis solar tracking system, which consist control panel with ATmega128 CPU, BLDC motor-cylinder actuator and 2-axis link mechanism, was developed. Computed azimuth and altitude of sun for a current time, and latitude and longitude of tracker position built are controlled in real time by BLDC motor-cylinder actuators comparing with the position feed-backed by Hall sensor. The use of BLDC motor is free in maintenance. Implementation of a home-return function by Hall sensor is to minimize the cumulative error.

Force monitoring of Galfan cables in a long-span cable-truss string-support system based on the magnetic flux method

  • Yuxin Zhang;Xiang Tian;Juwei Xia;Hexin Zhang
    • Structural Monitoring and Maintenance
    • /
    • v.10 no.3
    • /
    • pp.261-281
    • /
    • 2023
  • Magnetic flux sensors are commonly used in monitoring the cable force, but the application of the sensors in large diameter non-closed Galfan cables, as those adopted in Yueqing Gymnasium which is located in Yueqing City, Zhejiang Province, China and is the largest span hybrid space structure in the world, is seldom done in engineering. Based on the construction of Yueqing Gymnasium, this paper studies the cable tension monitoring using the magnetic flux method across two stages, namely, the pre-calibration stage before the cable leaves the rigging factory and the field tension formation stage of the cable system. In the pre-calibration stage in the cable factory, a series of 1:1 full-scale comparative tests were carried out to study the feasibility and relability of this kind of monitoring method, and the influence on the monitoring results of charging and discharging voltage, sensor location, cable diameter and fitting method were also studied. Some meaningful conclusions were obtained. On this basis, the real-time cable tension monitoring system of the structure based on the magnetic flux method is established. During the construction process, the monitoring results of the cables are in good agreement with the data of the on-site pressure gauge.The work of this paper will provide a useful reference for cable force monitoring in the construction process of long-span spatial structures.

The Electric Field Distribution Characteristic Of Outdoor ECT Using the Preventive Diagnostic Sensor (예방진단센서가 내장된 옥외용 ECT의 전계분포특성)

  • Lee, Han-Joo;Cho, Sung-Hoon;Jung, Eui-Hwan;Yoon, Jae-Hoon;Lim, Kee-Joo;Kang, Sung-Hwa
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.03b
    • /
    • pp.27-27
    • /
    • 2010
  • The exact partial discharge pulse should be measured in order to estimate the discharge source in the solid insulation and diagnose the degree of deterioration. Partial discharges generated in the insulation occur in the internal voids or at the edge of the insulation, have unique characteristics following the type and location. When external voltage is applied, Partial discharges occurred in the restrictively presented voids increase the quantity of electrical charge at the discharge onset voltage. The discharge characteristics have remained constant as space is filled by the impurity such as a compound of gases accompanied with discharge. In this study, How to design the insulation about the problems of the built-in diagnostics in the transformer is discussed by the interpretation of electric field.

  • PDF

Design and Development of Sensor-based Virtual Experiment Contents for Smart Phone (스마트폰의 센서를 이용한 가상 실험 콘텐츠의 개발 및 설계)

  • Chung, Kwang Sik;Kwon, Sooyoul;Huang, Wen-Hao
    • Journal of Digital Contents Society
    • /
    • v.14 no.2
    • /
    • pp.161-169
    • /
    • 2013
  • Experiments and practices are critical instructional activities for teaching and learning natural sciences. However, by learning the experimental procedures in advance with the help of Virtual Experiments, natural science majors may address danger of handling chemicals before carrying out experiments in the laboratories. Virtual Experiments, a mobile learning app, provides learners with interactions between the learners and the contents by using the sensor built-in Android-platform smart phones. With the app, learners may handle the chemicals and experiment apparatuses, verify the reactions and assembly of the chemicals and instruments in advance. This paper describes the design and development of the Virtual Experiments in hope to promote the integration of mobile learning apps in order to better engage learners in the laboratories.

3D object generation based on the depth information of an active sensor (능동형 센서의 깊이 정보를 이용한 3D 객체 생성)

  • Kim, Sang-Jin;Yoo, Ji-Sang;Lee, Seung-Hyun
    • Journal of the Korea Computer Industry Society
    • /
    • v.7 no.5
    • /
    • pp.455-466
    • /
    • 2006
  • In this paper, 3D objects is created from the real scene that is used by an active sensor, which gets depth and RGB information. To get the depth information, this paper uses the $Zcam^{TM}$ camera which has built-in an active sensor module. <중략> Thirdly, calibrate the detailed parameters and create 3D mesh model from the depth information, then connect the neighborhood points for the perfect 3D mesh model. Finally, the value of color image data is applied to the mesh model, then carries out mapping processing to create 3D object. Experimentally, it has shown that creating 3D objects using the data from the camera with active sensors is possible. Also, this method is easier and more useful than the using 3D range scanner.

  • PDF

Comparison of WiFi Protocols for Safety Communication Between Hydrogen Refueling Station and Fuel Cell Electric Vehicle (수소충전소와 수소전기차간의 안전통신을 위한 WiFi 프로토콜 비교)

  • Ha-Jin Hwang;Dong-Geon So;Do-Ho Cha;Hye-Jin Chae;Seo-Hee Jung;Sung-Ho Hwang
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.6
    • /
    • pp.81-87
    • /
    • 2023
  • SAE J2601 and SAE J2799, the communication protocols between a hydrogen refueling station and a fuel cell electric vehicle, only cover hydrogen charging. In this paper, we measure the hydrogen detection, current, and voltage of a fuel cell electric vehicle and transmit the sensor data to the hydrogen refueling station by changing the WiFi protocol. A small-scale laboratory model was built using Raspberry Pi for sensing, controlling, and transmitting sensor data of a fuel cell electric vehicle. The sensor data was stored in the database of the hydrogen refueling station, and a dashboard was configured using Grafana to analyze the stored data. When hydrogen is detected, the dispenser valve of the hydrogen refueling station is locked. Then, we measured the average transmission delay according to the WiFi protocol. The results showed that IEEE 802.11a is the most suitable WiFi protocol for transmitting sensor data between the hydrogen refueling station and the fuel cell electric vehicle.

UbiqBIOPARC: A Wireless and Sensor Based Context-Aware System for an Enhanced Guide Experience

  • Sorribes, Jose-Vicente;Cano, Juan-Carlos;Calafate, Carlos T.;Manzoni, Pietro
    • Journal of Multimedia Information System
    • /
    • v.1 no.1
    • /
    • pp.11-22
    • /
    • 2014
  • This work discusses and evaluates the use of wireless and multi-sensor based technologies to develop UbiqBIOPARC, a new generation zoological park that has been created based on the zoo-immersion concept. It offers appropriate contextual information to zoo visitors, depending on their preferences and the environment in which they are positioned. It combines the flexibility of the iPhone SDK, the connectivity provided by 3G technologies, the location capabilities of GPS, and the orientation offered by a digital compass integrated in the device. In this document the overall architecture and the implementation steps followed to create this context-aware application are presented. We compare our system with respect to previous ones and demonstrate that UbiqBIOPARC is an example of how innovative context-aware applications can be built with the aid of GPS and compass features. Several real experiments have been carried out in order to evaluate performance and system behavior, and numerical results demonstrate the practicality offered by our application, while providing a quite reasonable performance in terms of delay, usability, and energy efficiency.

  • PDF

A Precise Location Tracking System with Smart Context-Awareness Based-on Doppler Radar Sensors (스마트한 상황인지를 적용한 도플러 레이더 센서 기반의 정밀 위치추정 시스템)

  • Moon, Seung-Jin;Kim, Hong-Kyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.12
    • /
    • pp.1159-1166
    • /
    • 2010
  • Today, detecting the location of moving object has been traced as various methods in our world. In this paper, we preset the system to improve the estimation accuracy utilizing detail localization using radar sensor based on WSN and situational awareness for a calibration (context aware) database, Rail concept. A variety of existing location tracking method has a problem with receiving of data and accuracy as tracking methodology, and since these located data are the only data to be collected for location tracing, the context aware or monitering as the surrounding environment is limited. So, in this paper, we enhanced the distance aware accuracy using radar sensor utilizing the Doppler effect among the distance measuring method, estimated the location using the Triangulation algorithm. Also, since we composed the environment data(temperature, illuminancem, humidity, noise) to entry of the database, it can be utilized in location-based service according to the later action information inference and positive context decision. In order to verify the validity of the suggested method, we give a few random situation and built test bed of designed node, and over the various test we proved the utilizing the context information through route tracking of moving and data processing.

Intelligent Evaluation Algorithm for Identifying Hazards in Public Restrooms Using Virtual Reality and Sensor Data (가상현실과 센서데이터를 활용하는 공중화장실 위험요소 지능형 평가 알고리즘)

  • Shin-Sook Yoon;Jeong-Hwa Song
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.2
    • /
    • pp.473-482
    • /
    • 2024
  • This study utilized virtual reality to construct a simulated public restroom environment to identify potential hazards. The objective was to discern actual risks in real-world public restrooms through this virtual setup. During the virtual restroom experience, data from the built-in 3-axis accelerometer and gyroscope sensors of testor's smart phones were collected. Analysis of this data helped in identifying spatio temporal factors impacting the users. The determination of these factors as risk elements was based on an evaluation algorithm grounded in data analysis.

An Exploratory Research for Development of Design of Sensor-based Smart Clothing - Focused on the Healthcare Clothing Based on Bio-monitoring Technology - (센서 기반형 스마트 의류의 디자인 개발을 위한 탐색적 연구 - 생체 신호 센서 기술에 기반한 건강관리용 의류를 중심으로 -)

  • Cho Ha-Kyung;Lee Joo-Hyeon;Lee Chung-Keun;Lee Myoung-Ho
    • Science of Emotion and Sensibility
    • /
    • v.9 no.2
    • /
    • pp.141-150
    • /
    • 2006
  • Since the late 1990s, 'smart clothing' has been developed in a various way to meet the need of users and to help people more friendly interact with computers through its various designs. Recently, various applications of smart clothing concept have been presented by researchers. Among the various applications, smart clothing with a health care system is most likely to gain the highest demand rate in the market. Among them, smart clothing for check-up of health status with its sensors is expected to sell better than other types of smart clothing on the market. Under this circumstance, research and development for this field have been accelerated furthermore. This research institution has invented biometric sensors suitable for the smart clothing, and has developed a design to diagnose various diseases such as cardiac disorder and respiratory diseases. The newly developed smart clothing in this study looks similar to the previous inventions, but people can feel more comfortable in it with its fabric interaction built in it. When people wear it, the health status of the wearers is diagnosed and its signals are transmitted to the connected computer so the result can be easily monitored in real time. This smart clothing is a new kind of clothing as a supporting system for preventing various cardiac disorder and respiratory diseases using its biometric sensor built-in, and is also an archetype to show how smart clothing can work on the market.

  • PDF