• Title/Summary/Keyword: Building-collapse Risk

Search Result 53, Processing Time 0.024 seconds

Collapse Probability of a Low-rise Piloti-type Building Considering Domestic Seismic Hazard (국내 지진재해도를 고려한 저층 필로티 건물의 붕괴 확률)

  • Kim, Dae-Hwan;Kim, Taewan;Chu, Yurim
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.20 no.7_spc
    • /
    • pp.485-494
    • /
    • 2016
  • The risk-based assessment, also called time-based assessment of structure is usually performed to provide seismic risk evaluation of a target structure for its entire life-cycle, e.g. 50 years. The prediction of collapse probability is the estimator in the risk-based assessment. While the risk-based assessment is the key in the performance-based earthquake engineering, its application is very limited because this evaluation method is very expensive in terms of simulation and computational efforts. So the evaluation database for many archetype structures usually serve as representative of the specific system. However, there is no such an assessment performed for building stocks in Korea. Consequently, the performance objective of current building code, KBC is not clear at least in a quantitative way. This shortcoming gives an unresolved issue to insurance industry, socio-economic impact, seismic safety policy in national and local governments. In this study, we evaluate the comprehensive seismic performance of an low-rise residential buildings with discontinuous structural walls, so called piloti-type structure which is commonly found in low-rise domestic building stocks. The collapse probability is obtained using the risk integral of a conditioned collapse capacity function and regression of current hazard curve. Based on this approach it is expected to provide a robust tool to seismic safety policy as well as seismic risk analysis such as Probable Maximum Loss (PML) commonly used in the insurance industry.

Research on the Production of Risk Maps on Cut Slope Using Weather Information and Adaboost Model (기상정보와 Adaboost 모델을 이용한 깎기비탈면 위험도 지도 개발 연구)

  • Woo, Yonghoon;Kim, Seung-Hyun;Kim, Jin uk;Park, GwangHae
    • The Journal of Engineering Geology
    • /
    • v.30 no.4
    • /
    • pp.663-671
    • /
    • 2020
  • Recently, there have been many natural disasters in Korea, not only in forest areas but also in urban areas, and the national requirements for them are increasing. In particular, there is no pre-disaster information system that can systematically manage the collapse of the slope of the national highway. In this study, big data analysis was conducted on the factors causing slope collapse based on the detailed investigation report on the slope collapse of national roads in Gangwon-do and Gyeongsang-do areas managed by the Cut Slope Management System (CSMS) and the basic survey of slope failures. Based on the analysis results, a slope collapse risk prediction model was established through Adaboost, a classification-based machine learning model, reflecting the collapse slope location and weather information. It also developed a visualization map for the risk of slope collapse, which is a visualization program, to show that it can be used for preemptive disaster prevention measures by identifying the risk of slope due to changes in weather conditions.

Design guides to resist progressive collapse for steel structures

  • Mirtaheri, M.;Zoghi, M. Abbasi
    • Steel and Composite Structures
    • /
    • v.20 no.2
    • /
    • pp.357-378
    • /
    • 2016
  • The progressive collapse phenomenon in structures has been interested by civil engineers and the building standards organizations. This is particularly true for the tall and special buildings ever since local collapse of the Ronan Point tower in UK in 1968. When initial or secondary defects of main load carrying elements, overloads or unpredicted loads occur in the structure, a local collapse may be arise that could be distributed through entire structure and cause global collapse. One is not able to prevent the reason of failure as well as the prevention of propagation of the collapse. Also, one is not able to predict the start point of collapse. Therefore we should generalize design guides to whole or the part of structure based on the risk analysis and use of load carrying elements removal scenario. There are some new guides and criteria for elements and connections to be designed to resist progressive collapse. In this paper, codes and recommendations by various researchers are presented, classified and compared for steel structures. Two current design methods are described in this paper and some retrofitting methods are summarized. Finally a steel building with special moment resistant frame is analyzed as a case study based on two standards guidelines. This includes consideration of codes recommendations. It is shown that progressive collapse potential of the building depends on the removal scenario selection and type of analysis. Different results are obtained based on two guidelines.

Disasters Risk Assessment of Urban Areas by Geospatial Information Systems (지형공간정보체계에 의한 도시지역 재해위험도 평가)

  • Yoo, Hwan-Hee;Kim, Seong-Sam;Park, Ki-Youn;Choi, Woo-Suk
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.13 no.3 s.33
    • /
    • pp.41-52
    • /
    • 2005
  • The high density of population and building; can cause catastrophe in urban areas when natural or artificial disasters break out. The aim of this paper is to assess comprehensive disasters risk of urban areas by Geospatial Information System. For this purpose, we classified disasters risk of urban areas into low categories: flood, fire, building-collapse, and shelter, and then determined factors for hazard risk assessment respectively. The results of hazard assessment can be applied to minimize the demage of disasters in establishing the urban management planning. For more systematic and professional approach the further research is need to consider more disaster assessment factors and join with related experts.

  • PDF

Seismic Collapse Risk for Non-Ductile Reinforced Concrete Buildings According to Seismic Design Categories (비연성 철근콘크리트 건물의 내진설계범주에 따른 붕괴 위험성 평가)

  • Kim, Minji;Han, Sang Whan;Kim, Taeo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.25 no.4
    • /
    • pp.161-168
    • /
    • 2021
  • Existing old reinforced concrete buildings could be vulnerable to earthquakes because they were constructed without satisfying seismic design and detail requirements. In current seismic design standards, the target collapse probability for a given Maximum Considered Earthquake (MCE) ground-shaking hazard is defined as 10% for ordinary buildings. This study aims to estimate the collapse probabilities of a three-story, old, reinforced concrete building designed by only considering gravity loads. Four different seismic design categories (SDC), A, B, C, and D, are considered. This study reveals that the RC building located in the SDC A region satisfies the target collapse probability. However, buildings located in SDC B, C, and D regions do not meet the target collapse probability. Since the degree of exceedance of the target probability increases with an increase in the SDC level, it is imminent to retrofit non-ductile RC buildings similar to the model building. It can be confirmed that repair and reinforcement of old reinforced concrete buildings are required.

Risk-Targeted Seismic Performance of Steel Ordinary Concentrically Braced Frames Considering Seismic Hazard (지진재해도를 고려한 철골 보통중심가새골조의 위험도기반 내진성능)

  • Shin, Dong-Hyeon;Hong, Suk-Jae;Kim, Hyung-Joon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.5
    • /
    • pp.371-380
    • /
    • 2017
  • The risk-targeted seismic design concept was first included in ASCE/SEI 7-10 to address problems related to the uniform-hazard based seismic concept that has been constructed without explicitly considering probabilistic uncertainties in the collapse capacities of structures. However, this concept is not yet reflected to the current Korean building code(KBC) because of insufficient strong earthquake data occurred at the Korean peninsula and little information on the collapse capacities of structures. This study evaluates the risk-targeted seismic performance of steel ordinary concentrically braced frames(OCBFs). To do this, the collapse capacities of prototype steel OCBFs are assessed with various analysis parameters including building locations, building heights and soil conditions. The seismic hazard curves are developed using an empirical spectral shape prediction model that is capable of reflecting the characteristics of earthquake records. The collapse probabilities of the prototype steel OCBFs located at the Korean major cities are then evaluated using the risk integral concept. As a result, analysis parameters considerably influence the collapse probabilities of steel OCBFs. The collapse probabilities of taller steel OCBFs exceed the target seismic risk of 1 percent in 50 years, which the introduction of the height limitation of steel OCBFs into the future KBC should be considered.

Seismic collapse risk of RC frames with irregular distributed masonry infills

  • Li, Yan-Wen;Yam, Michael C.H.;Cao, Ke
    • Structural Engineering and Mechanics
    • /
    • v.76 no.3
    • /
    • pp.421-433
    • /
    • 2020
  • Masonry infills are normally considered as non-structural elements in design practice, therefore, the interaction between the bounding frame and the strength contribution of masonry infills is commonly ignored in the seismic analysis work of the RC frames. However, a number of typical RC frames with irregular distributed masonry infills have suffered from undesirable weak-story failure in major earthquakes, which indicates that ignoring the influence of masonry infills may cause great seismic collapse risk of RC frames. This paper presented the investigation on the risk of seismic collapse of RC frames with irregularly distributed masonry infills through a large number of nonlinear time history analyses (NTHAs). Based on the results of NTHAs, seismic fragility curves were developed for RC frames with various distribution patterns of masonry infills. It was found that the existence of masonry infills generally reduces the collapse risk of the RC frames under both frequent happened and very strong earthquakes, however, the severe irregular distribution of masonry infills, such as open ground story scenario, results in great risk of forming a weak story failure. The strong-column weak-beam (SCWB) ratio has been widely adopted in major seismic design codes to control the potential of weak story failures, where a SCWB ratio value about 1.2 is generally accepted as the lower limit. In this study, the effect of SCWB ratio on inter-story drift distribution was also parametrically investigated. It showed that improving the SCWB ratio of the RC frames with irregularly distributed masonry infills can reduce inter-story drift concentration index under earthquakes, therefore, prevent weak story failures. To achieve the same drift concentration index limit of the bare RC frame with SCWB ratio of about 1.2, which is specified in ACI318-14, the SCWB ratio of masonry-infilled RC frames should be no less than 1.5. For the open ground story scenario, this value can be as high as 1.8.

The Method for Analyzing Potentially Collapsible Aged Buildings Using Big Data and its Application to Seoul (빅데이터 기반의 잠재적 붕괴위험 노후건축물 도출 방법 및 서울특별시 적용 연구)

  • Lim, Hae-Yeon;Park, Cheol-Yeong;Cho, Sung-Hyeon;Lee, Ghang
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.35 no.2
    • /
    • pp.139-146
    • /
    • 2019
  • The purpose of this study is to derive an improved method for analyzing old buildings with risk of collapse using public big data. Previous studies on the risk of building collapse focused on internal factors such as building age and structural vulnerability. However, this study suggests a method to derive potentially collapsible buildings considering not only internal factors of buildings but also external factors such as nearby new construction data. Based on the big data analysis, this study develops a system to visualize vulnerable buildings that require safety diagnosis and proposed a future utilization plan.

A Study on the Critical Safety Management Buildings and factors by Analyzing the Actual State of Building Safety Management (건축물 안전관리 실태분석을 통한 중점안전관리 대상 및 요소 설정에 관한 연구)

  • Kim, Eun-Hee
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.35 no.4
    • /
    • pp.37-44
    • /
    • 2019
  • According to the statistical surveys and studies, insufficient maintenance in the use of existing buildings caused fire and collapse accidents. In this respect, I analyzed the data managed by the current building maintenance and inspection system to find out the actual state of safety management and proposed two significant results. First, regarding the state of the buildings, the safety management status of the small-sized ones, where 20 years or more passed after construction, is the worst and a priority improvement plan is required. Second, there are eight deeply concerning factors for the fire incidents and collapse accidents of buildings. In the order of high risk, these factors are structural strength (seismic design), exterior wall finishing material, basement floor, interior finishing materials, other evacuation facilities, corridors stairs entrances, rooftop, fire partition. We need to have more special designs and management plans regarding high-risk factors as a system to prevent accidents in the building.

Proposing a Method for Robustness Index Evaluation of the Structures Based on the Risk Analysis of Main Shock and Aftershock

  • Abdollahzadeh, Gholamreza;Faghihmaleki, Hadi
    • International journal of steel structures
    • /
    • v.18 no.5
    • /
    • pp.1710-1722
    • /
    • 2018
  • Investigating remained damages from terrible earthquakes, it could be concluded that some events including explosion because of defect and failure in the building mechanical facilities or caused by gas leak, firing, aftershocks, etc., which are occurred during or a few time after the earthquake, will increase the effects of damages. In this paper, by introducing a complete risk analysis which included direct and indirect risks for earthquake (the main shock) and aftershock, the corresponding robustness index was created that called as "robustness index sequential critical events risk-based". One of the main properties of the intended robustness index is using progressive collapse percentage in its evaluation. Then, in a numerical example for a 4-storey moment resisting steel frame structure, a method is presented for obtaining all effective parameters in robustness index evaluation based on the intended risk and at last its results were reported.