• Title/Summary/Keyword: Building information

Search Result 6,999, Processing Time 0.038 seconds

Analysis of Fire Occurrence Characteristics According to Ignition Heat Sources (발화열원에 따른 화재발생 특성 분석)

  • Lee, Kyung-Su;Kim, Tae-Hyeung;Lee, Jae-Ou
    • Journal of the Society of Disaster Information
    • /
    • v.18 no.2
    • /
    • pp.280-289
    • /
    • 2022
  • Purpose: In this study, the characteristics of fire occurrence according to ignition heat sources such as operating equipment, cigarette/lighter fire, and flame/fire were analyzed. Method: One-way ANOVA and cross-analysis were used to analyze the characteristics of fire occurrence by verifying the difference between the ignition environment, fire damage status and scale, and cause of ignition according to the ignition heat source. Result: The fire occurrence characteristics were analyzed through As a result of the analysis, it was found that fires caused by operating devices occurred more frequently on weekdays than other ignition heat sources, and the number of victims and the number of victims were the highest, so mobilization of firefighting power and property damage were the greatest. The initial ignition was generated by electric and electronic devices, and the combustion was expanded by the synthetic resin. For fires caused by cigarette and lighter fires, the most fires occurred on Saturdays and Sundays, and the mobilization of the police force was more characteristic than the mobilization of the firefighting force. In particular, it was found that the initial ignition and combustion expansion were caused by paper, wood, and hay. Fires caused by sparks and sparks occurred most frequently on Saturdays and Sundays, and initial ignition and combustion expansion were found to be caused by paper, wood, and hay. In particular, it showed the characteristic that it occurred in the place farthest from the fire station. The common characteristic of all ignition heat sources was that the fire occurred most frequently in the afternoon time, and the fire type was predominantly the building structure fire, and only the ignition point was burned the most. Conclusion: In order to prevent fire and minimize damage, it is necessary to analyze the tendency of fire occurrence and to prepare appropriate preparations according to the fire occurrence factors. In order to analyze the characteristics of fire occurrence using public data in the future, it is necessary to standardize disaster data and to open and activate data.

Research on the Circumstance for Agricultural Investment of Cambodia (캄보디아 농업투자 환경에 관한 연구)

  • Lee, Kyu-Seong;Bae, Dong-Jin;Kim, Seong-Nam;Kang, Young-Shin
    • Journal of the Korean Society of International Agriculture
    • /
    • v.23 no.5
    • /
    • pp.475-484
    • /
    • 2011
  • International price of cereal has been dramatically increasing for the past few years. This price hike amplified the importance of food self-sufficiency in numerous countries due to the fact that food security is directly proportional to food self-sufficiency. In this study, we conducted a survey to provide useful information of Cambodia's agricultural environment to possible Korean agricultural investors and as to highlight Cambodia as a strong candidate for the establishment of Korea's foreign base for cereal production. The survey conducted includes information regarding Cambodia's agricultural environment and investment circumstances including the political, economical and other contributing factors affecting agricultural investment in Cambodia. Seventy percent of the Cambodia's total population engage in agriculture and this comprises about 30% of the country's GDP. This statistics reflects the possibility of Cambodia's poverty alleviation which proves that agriculture in Cambodia is the driving force for the improvement of the country's economy. In addition, low labor cost, fertile land, abundant water resources, like the Tonle sap lake and the Mekong river, and unreclaimed lands are the strong points that could attract agricultural investors to Cambodia. Poor infrastructure, irrigation systems, law reforms, including social and cultural differences may be the biggest setbacks for the acceleration of Cambodia's agriculture development. However, the Cambodian government is open and willing to make adjustments for Cambodia to be both foreign and domestic agricultural investor-friendly, expecting that it will boost its country's agricultural development. Making the best out of this opportunity, the coordination of KOICA with Korean agricultural investors in building infrastructures and with the help of the KOPIA program for the transfer of agricultural technology will benefit both countries and will play an important role in Cambodia's agriculture.

Evaluations of Chinese Brand Name by Different Translation Types: Focusing on The Moderating Role of Brand Concept (영문 브랜드네임의 중문 브랜드네임 전환 방식에 대한 중화권 소비자들의 브랜드 평가에 관한 연구 -브랜드컨셉의 조절효과를 중심으로-)

  • Lee, Jieun;Jeon, Jooeon;Hsiao, Chen Fei
    • Asia Marketing Journal
    • /
    • v.12 no.4
    • /
    • pp.1-25
    • /
    • 2011
  • Brand names are often considered as a part of product and important extrinsic cues of product evaluation, when consumers make purchasing decisions. For a company, brand names are also important assets. Building a strong brand name in the Chinese commonwealth is a main challenge for many global companies. One of the first problem global company has to face is how to translate English brand name into Chinese brand name. It is very difficult decision because of cultural and linguistic differences. Western languages are based on an alphabet phonetic system, whereas Chinese are based on ideogram. Chinese speakers are more likely to recall stimuli presented as brand names in visual rather than spoken recall, whereas English speakers are more likely to recall the names in spoken rather than in visual recall. We interpret these findings in terms of the fact that mental representations of verbal information in Chinese are coded primarily in a visual manner, whereas verbal information in English is coded by primarily in a phonological manner. A key linguistic differences that would affect the decision to standardize or localize when transferring English brand name to Chinese brand name is the writing system. Prior Chinese brand naming research suggests that popular Chinese naming translations foreign companies adopt are phonetic, semantic, and phonosemantic translation. The phonetic translation refers to the speech sound that is produced, such as the pronunciation of the brand name. The semantic translation involves the actual meaning of and association made with the brand name. The phonosemantic translation preserves the sound of the brand name and brand meaning. Prior brand naming research has dealt with word-level analysis in examining English brand name that are desirable for improving memorability. We predict Chinese brand name suggestiveness with different translation methods lead to different levels of consumers' evaluations. This research investigates the structural linguistic characteristics of the Chinese language and its impact on the brand name evaluation. Otherwise purpose of this study is to examine the effect of brand concept on the evaluation of brand name. We also want to examine whether the evaluation is moderated by Chinese translation types. 178 Taiwanese participants were recruited for the research. The following findings are from the empirical analysis on the hypotheses established in this study. In the functional brand concept, participants in Chinese translation by semantic were likely to evaluate positively than Chinese translation by phonetic. On the contrary, in the symbolic brand concept condition, participants in Chinese translation by phonetic evaluated positively than by semantic. And then, we found Chinese translation by phonosemantic was most favorable evaluations regardless of brand concept. The implications of these findings are discussed for Chinese commonwealth marketers with respect to brand name strategies. The proposed model helps companies to effectively select brand name, making it highly applicable for academia and practitioner. name and brand meaning. Prior brand naming research has dealt with word-level analysis in examining English brand name that are desirable for improving memorability. We predict Chinese brand name suggestiveness with different translation methods lead to different levels of consumers' evaluations. This research investigates the structural linguistic characteristics of the Chinese language and its impact on the brand name evaluation. Otherwise purpose of this study is to examine the effect of brand concept on the evaluation of brand name. We also want to examine whether the evaluation is moderated by Chinese translation types. 178 Taiwanese participants were recruited for the research. The following findings are from the empirical analysis on the hypotheses established in this study. In the functional brand concept, participants in Chinese translation by semantic were likely to evaluate positively than Chinese translation by phonetic. On the contrary, in the symbolic brand concept condition, participants in Chinese translation by phonetic evaluated positively than by semantic. And then, we found Chinese translation by phonosemantic was most favorable evaluations regardless of brand concept. The implications of these findings are discussed for Chinese commonwealth marketers with respect to brand name strategies. The proposed model helps companies to effectively select brand name, making it highly applicable for academia and practitioner.

  • PDF

Mobile Camera-Based Positioning Method by Applying Landmark Corner Extraction (랜드마크 코너 추출을 적용한 모바일 카메라 기반 위치결정 기법)

  • Yoo Jin Lee;Wansang Yoon;Sooahm Rhee
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_1
    • /
    • pp.1309-1320
    • /
    • 2023
  • The technological development and popularization of mobile devices have developed so that users can check their location anywhere and use the Internet. However, in the case of indoors, the Internet can be used smoothly, but the global positioning system (GPS) function is difficult to use. There is an increasing need to provide real-time location information in shaded areas where GPS is not received, such as department stores, museums, conference halls, schools, and tunnels, which are indoor public places. Accordingly, research on the recent indoor positioning technology based on light detection and ranging (LiDAR) equipment is increasing to build a landmark database. Focusing on the accessibility of building a landmark database, this study attempted to develop a technique for estimating the user's location by using a single image taken of a landmark based on a mobile device and the landmark database information constructed in advance. First, a landmark database was constructed. In order to estimate the user's location only with the mobile image photographing the landmark, it is essential to detect the landmark from the mobile image, and to acquire the ground coordinates of the points with fixed characteristics from the detected landmark. In the second step, by applying the bag of words (BoW) image search technology, the landmark photographed by the mobile image among the landmark database was searched up to a similar 4th place. In the third step, one of the four candidate landmarks searched through the scale invariant feature transform (SIFT) feature point extraction technique and Homography random sample consensus(RANSAC) was selected, and at this time, filtering was performed once more based on the number of matching points through threshold setting. In the fourth step, the landmark image was projected onto the mobile image through the Homography matrix between the corresponding landmark and the mobile image to detect the area of the landmark and the corner. Finally, the user's location was estimated through the location estimation technique. As a result of analyzing the performance of the technology, the landmark search performance was measured to be about 86%. As a result of comparing the location estimation result with the user's actual ground coordinate, it was confirmed that it had a horizontal location accuracy of about 0.56 m, and it was confirmed that the user's location could be estimated with a mobile image by constructing a landmark database without separate expensive equipment.

A Study on Factors Affecting BigData Acceptance Intention of Agricultural Enterprises (농업 관련 기업의 빅데이터 수용 의도에 미치는 영향요인 연구)

  • Ryu, GaHyun;Heo, Chul-Moo
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.17 no.1
    • /
    • pp.157-175
    • /
    • 2022
  • At this moment, a paradigm shift is taking place across all sectors of society for the transition movements to the digital economy. Various movements are taking place in the global agricultural industry to achieve innovative growth using big data which is a key resource of the 4th industrial revolution. Although the government is making various attempts to promote the use of big data, the movement of the agricultural industry as a key player in the use of big data, is still insufficient. Therefore, in this study, effects of performance expectations, effort expectations, social impact, facilitation conditions, based on the Unified Theory of Acceptance and Use of Technology(UTAUT), and innovation tendencies on the acceptance intention of big data were analyzed using the economic and practical benefits that can be obtained from the use of big data for agricultural-related companies as moderating variables. 333 questionnaires collected from agricultural-related companies were used for empirical analysis. The analysis results using SPSS v22.0 and Process macro v3.4 were found to have a significant positive (+) effect on the intention to accept big data by effort expectations, social impact, facilitation conditions, and innovation tendencies. However, it was found that the effect of performance expectations on acceptance intention was insignificant, with social impact having the greatest influence on acceptance intention and innovation tendency the least. Moderating effects of economic benefit and practical benefit between effort expectation and acceptance intention, moderating effect of practical benefit between social impact and acceptance intention, and moderating effect of economic benefit and practical benefit between facilitation condition and acceptance intention were found to be significant. On the other hand, it was found that economic benefits and practical benefits did not moderate the magnitude of the influence of performance expectations and innovation tendency on acceptance intention. These results suggest the following implications. First, in order to promote the use of big data by companies, the government needs to establish a policy to support the use of big data tailored to companies. Significant results can only be achieved when corporate members form a correct understanding and consensus on the use of big data. Second, it is necessary to establish and implement a platform specialized for agricultural data which can support standardized linkage between diverse agricultural big data, and support for a unified path for data access. Building such a platform will be able to advance the industry by forming an independent cooperative relationship between companies. Finally, the limitations of this study and follow-up tasks are presented.

The Effects of the Computer Aided Innovation Capabilities on the R&D Capabilities: Focusing on the SMEs of Korea (Computer Aided Innovation 역량이 연구개발역량에 미치는 효과: 국내 중소기업을 대상으로)

  • Shim, Jae Eok;Byeon, Moo Jang;Moon, Hyo Gon;Oh, Jay In
    • Asia pacific journal of information systems
    • /
    • v.23 no.3
    • /
    • pp.25-53
    • /
    • 2013
  • This study analyzes the effect of Computer Aided Innovation (CAI) to improve R&D Capabilities empirically. Survey was distributed by e-mail and Google Docs, targeting CTO of 235 SMEs. 142 surveys were returned back (rate of return 60.4%) from companies. Survey results from 119 companies (83.8%) which are effective samples except no-response, insincere response, estimated value, etc. were used for statistics analysis. Companies with less than 50billion KRW sales of entire researched companies occupy 76.5% in terms of sample traits. Companies with less than 300 employees occupy 83.2%. In terms of the type of company business Partners (called 'partners with big companies' hereunder) who work with big companies for business occupy 68.1%. SMEs based on their own business (called 'independent small companies') appear to occupy 31.9%. The present status of holding IT system according to traits of company business was classified into partners with big companies versus independent SMEs. The present status of ERP is 18.5% to 34.5%. QMS is 11.8% to 9.2%. And PLM (Product Life-cycle Management) is 6.7% to 2.5%. The holding of 3D CAD is 47.1% to 21%. IT system-holding and its application of independent SMEs seemed very vulnerable, compared with partner companies of big companies. This study is comprised of IT infra and IT Utilization as CAI capacity factors which are independent variables. factors of R&D capabilities which are independent variables are organization capability, process capability, HR capability, technology-accumulating capability, and internal/external collaboration capability. The highest average value of variables was 4.24 in organization capability 2. The lowest average value was 3.01 in IT infra which makes users access to data and information in other areas and use them with ease when required during new product development. It seems that the inferior environment of IT infra of general SMEs is reflected in CAI itself. In order to review the validity used to measure variables, Factors have been analyzed. 7 factors which have over 1.0 pure value of their dependent and independent variables were extracted. These factors appear to explain 71.167% in total of total variances. From the result of factor analysis about measurable variables in this study, reliability of each item was checked by Cronbach's Alpha coefficient. All measurable factors at least over 0.611 seemed to acquire reliability. Next, correlation has been done to explain certain phenomenon by correlation analysis between variables. As R&D capabilities factors which are arranged as dependent variables, organization capability, process capability, HR capability, technology-accumulating capability, and internal/external collaboration capability turned out that they acquire significant correlation at 99% reliability level in all variables of IT infra and IT Utilization which are independent variables. In addition, correlation coefficient between each factor is less than 0.8, which proves that the validity of this study judgement has been acquired. The pair with the highest coefficient had 0.628 for IT utilization and technology-accumulating capability. Regression model which can estimate independent variables was used in this study under the hypothesis that there is linear relation between independent variables and dependent variables so as to identify CAI capability's impact factors on R&D. The total explanations of IT infra among CAI capability for independent variables such as organization capability, process capability, human resources capability, technology-accumulating capability, and collaboration capability are 10.3%, 7%, 11.9%, 30.9%, and 10.5% respectively. IT Utilization exposes comprehensively low explanatory capability with 12.4%, 5.9%, 11.1%, 38.9%, and 13.4% for organization capability, process capability, human resources capability, technology-accumulating capability, and collaboration capability respectively. However, both factors of independent variables expose very high explanatory capability relatively for technology-accumulating capability among independent variable. Regression formula which is comprised of independent variables and dependent variables are all significant (P<0.005). The suitability of regression model seems high. When the results of test for dependent variables and independent variables are estimated, the hypothesis of 10 different factors appeared all significant in regression analysis model coefficient (P<0.01) which is estimated to affect in the hypothesis. As a result of liner regression analysis between two independent variables drawn by influence factor analysis for R&D capability and R&D capability. IT infra and IT Utilization which are CAI capability factors has positive correlation to organization capability, process capability, human resources capability, technology-accumulating capability, and collaboration capability with inside and outside which are dependent variables, R&D capability factors. It was identified as a significant factor which affects R&D capability. However, considering adjustable variables, a big gap is found, compared to entire company. First of all, in case of partner companies with big companies, in IT infra as CAI capability, organization capability, process capability, human resources capability, and technology capability out of R&D capacities seems to have positive correlation. However, collaboration capability appeared insignificance. IT utilization which is a CAI capability factor seemed to have positive relation to organization capability, process capability, human resources capability, and internal/external collaboration capability just as those of entire companies. Next, by analyzing independent types of SMEs as an adjustable variable, very different results were found from those of entire companies or partner companies with big companies. First of all, all factors in IT infra except technology-accumulating capability were rejected. IT utilization was rejected except technology-accumulating capability and collaboration capability. Comprehending the above adjustable variables, the following results were drawn in this study. First, in case of big companies or partner companies with big companies, IT infra and IT utilization affect improving R&D Capabilities positively. It was because most of big companies encourage innovation by using IT utilization and IT infra building over certain level to their partner companies. Second, in all companies, IT infra and IT utilization as CAI capability affect improving technology-accumulating capability positively at least as R&D capability factor. The most of factor explanation is low at around 10%. However, technology-accumulating capability is rather high around 25.6% to 38.4%. It was found that CAI capability contributes to technology-accumulating capability highly. Companies shouldn't consider IT infra and IT utilization as a simple product developing tool in R&D section. However, they have to consider to use them as a management innovating strategy tool which proceeds entire-company management innovation centered in new product development. Not only the improvement of technology-accumulating capability in department of R&D. Centered in new product development, it has to be used as original management innovative strategy which proceeds entire company management innovation. It suggests that it can be a method to improve technology-accumulating capability in R&D section and Dynamic capability to acquire sustainable competitive advantage.

An Analysis of the Moderating Effects of User Ability on the Acceptance of an Internet Shopping Mall (인터넷 쇼핑몰 수용에 있어 사용자 능력의 조절효과 분석)

  • Suh, Kun-Soo
    • Asia pacific journal of information systems
    • /
    • v.18 no.4
    • /
    • pp.27-55
    • /
    • 2008
  • Due to the increasing and intensifying competition in the Internet shopping market, it has been recognized as very important to develop an effective policy and strategy for acquiring loyal customers. For this reason, web site designers need to know if a new Internet shopping mall(ISM) will be accepted. Researchers have been working on identifying factors for explaining and predicting user acceptance of an ISM. Some studies, however, revealed inconsistent findings on the antecedents of user acceptance of a website. Lack of consideration for individual differences in user ability is believed to be one of the key reasons for the mixed findings. The elaboration likelihood model (ELM) and several studies have suggested that individual differences in ability plays an moderating role on the relationship between the antecedents and user acceptance. Despite the critical role of user ability, little research has examined the role of user ability in the Internet shopping mall context. The purpose of this study is to develop a user acceptance model that consider the moderating role of user ability in the context of Internet shopping. This study was initiated to see the ability of the technology acceptance model(TAM) to explain the acceptance of a specific ISM. According to TAM. which is one of the most influential models for explaining user acceptance of IT, an intention to use IT is determined by usefulness and ease of use. Given that interaction between user and website takes place through web interface, the decisions to accept and continue using an ISM depend on these beliefs. However, TAM neglects to consider the fact that many users would not stick to an ISM until they trust it although they may think it useful and easy to use. The importance of trust for user acceptance of ISM has been raised by the relational views. The relational view emphasizes the trust-building process between the user and ISM, and user's trust on the website is a major determinant of user acceptance. The proposed model extends and integrates the TAM and relational views on user acceptance of ISM by incorporating usefulness, ease of use, and trust. User acceptance is defined as a user's intention to reuse a specific ISM. And user ability is introduced into the model as moderating variable. Here, the user ability is defined as a degree of experiences, knowledge and skills regarding Internet shopping sites. The research model proposes that the ease of use, usefulness and trust of ISM are key determinants of user acceptance. In addition, this paper hypothesizes that the effects of the antecedents(i.e., ease of use, usefulness, and trust) on user acceptance may differ among users. In particular, this paper proposes a moderating effect of a user's ability on the relationship between antecedents with user's intention to reuse. The research model with eleven hypotheses was derived and tested through a survey that involved 470 university students. For each research variable, this paper used measurement items recognized for reliability and widely used in previous research. We slightly modified some items proper to the research context. The reliability and validity of the research variables were tested using the Crobnach's alpha and internal consistency reliability (ICR) values, standard factor loadings of the confirmative factor analysis, and average variance extracted (AVE) values. A LISREL method was used to test the suitability of the research model and its relating six hypotheses. Key findings of the results are summarized in the following. First, TAM's two constructs, ease of use and usefulness directly affect user acceptance. In addition, ease of use indirectly influences user acceptance by affecting trust. This implies that users tend to trust a shopping site and visit repeatedly when they perceive a specific ISM easy to use. Accordingly, designing a shopping site that allows users to navigate with heuristic and minimal clicks for finding information and products within the site is important for improving the site's trust and acceptance. Usefulness, however, was not found to influence trust. Second, among the three belief constructs(ease of use, usefulness, and trust), trust was empirically supported as the most important determinants of user acceptance. This implies that users require trustworthiness from an Internet shopping site to be repeat visitors of an ISM. Providing a sense of safety and eliminating the anxiety of online shoppers in relation to privacy, security, delivery, and product returns are critically important conditions for acquiring repeat visitors. Hence, in addition to usefulness and ease of use as in TAM, trust should be a fundamental determinants of user acceptance in the context of internet shopping. Third, the user's ability on using an Internet shopping site played a moderating role. For users with low ability, ease of use was found to be a more important factors in deciding to reuse the shopping mall, whereas usefulness and trust had more effects on users with high ability. Applying the EML theory to these findings, we can suggest that experienced and knowledgeable ISM users tend to elaborate on such usefulness aspects as efficient and effective shopping performance and trust factors as ability, benevolence, integrity, and predictability of a shopping site before they become repeat visitors of the site. In contrast, novice users tend to rely on the low elaborating features, such as the perceived ease of use. The existence of moderating effects suggests the fact that different individuals evaluate an ISM from different perspectives. The expert users are more interested in the outcome of the visit(usefulness) and trustworthiness(trust) than those novice visitors. The latter evaluate the ISM in a more superficial manner focusing on the novelty of the site and on other instrumental beliefs(ease of use). This is consistent with the insights proposed by the Heuristic-Systematic model. According to the Heuristic-Systematic model. a users act on the principle of minimum effort. Thus, the user considers an ISM heuristically, focusing on those aspects that are easy to process and evaluate(ease of use). When the user has sufficient experience and skills, the user will change to systematic processing, where they will evaluate more complex aspects of the site(its usefulness and trustworthiness). This implies that an ISM has to provide a minimum level of ease of use to make it possible for a user to evaluate its usefulness and trustworthiness. Ease of use is a necessary but not sufficient condition for the acceptance and use of an ISM. Overall, the empirical results generally support the proposed model and identify the moderating effect of the effects of user ability. More detailed interpretations and implications of the findings are discussed. The limitations of this study are also discussed to provide directions for future research.

Ensemble of Nested Dichotomies for Activity Recognition Using Accelerometer Data on Smartphone (Ensemble of Nested Dichotomies 기법을 이용한 스마트폰 가속도 센서 데이터 기반의 동작 인지)

  • Ha, Eu Tteum;Kim, Jeongmin;Ryu, Kwang Ryel
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.4
    • /
    • pp.123-132
    • /
    • 2013
  • As the smartphones are equipped with various sensors such as the accelerometer, GPS, gravity sensor, gyros, ambient light sensor, proximity sensor, and so on, there have been many research works on making use of these sensors to create valuable applications. Human activity recognition is one such application that is motivated by various welfare applications such as the support for the elderly, measurement of calorie consumption, analysis of lifestyles, analysis of exercise patterns, and so on. One of the challenges faced when using the smartphone sensors for activity recognition is that the number of sensors used should be minimized to save the battery power. When the number of sensors used are restricted, it is difficult to realize a highly accurate activity recognizer or a classifier because it is hard to distinguish between subtly different activities relying on only limited information. The difficulty gets especially severe when the number of different activity classes to be distinguished is very large. In this paper, we show that a fairly accurate classifier can be built that can distinguish ten different activities by using only a single sensor data, i.e., the smartphone accelerometer data. The approach that we take to dealing with this ten-class problem is to use the ensemble of nested dichotomy (END) method that transforms a multi-class problem into multiple two-class problems. END builds a committee of binary classifiers in a nested fashion using a binary tree. At the root of the binary tree, the set of all the classes are split into two subsets of classes by using a binary classifier. At a child node of the tree, a subset of classes is again split into two smaller subsets by using another binary classifier. Continuing in this way, we can obtain a binary tree where each leaf node contains a single class. This binary tree can be viewed as a nested dichotomy that can make multi-class predictions. Depending on how a set of classes are split into two subsets at each node, the final tree that we obtain can be different. Since there can be some classes that are correlated, a particular tree may perform better than the others. However, we can hardly identify the best tree without deep domain knowledge. The END method copes with this problem by building multiple dichotomy trees randomly during learning, and then combining the predictions made by each tree during classification. The END method is generally known to perform well even when the base learner is unable to model complex decision boundaries As the base classifier at each node of the dichotomy, we have used another ensemble classifier called the random forest. A random forest is built by repeatedly generating a decision tree each time with a different random subset of features using a bootstrap sample. By combining bagging with random feature subset selection, a random forest enjoys the advantage of having more diverse ensemble members than a simple bagging. As an overall result, our ensemble of nested dichotomy can actually be seen as a committee of committees of decision trees that can deal with a multi-class problem with high accuracy. The ten classes of activities that we distinguish in this paper are 'Sitting', 'Standing', 'Walking', 'Running', 'Walking Uphill', 'Walking Downhill', 'Running Uphill', 'Running Downhill', 'Falling', and 'Hobbling'. The features used for classifying these activities include not only the magnitude of acceleration vector at each time point but also the maximum, the minimum, and the standard deviation of vector magnitude within a time window of the last 2 seconds, etc. For experiments to compare the performance of END with those of other methods, the accelerometer data has been collected at every 0.1 second for 2 minutes for each activity from 5 volunteers. Among these 5,900 ($=5{\times}(60{\times}2-2)/0.1$) data collected for each activity (the data for the first 2 seconds are trashed because they do not have time window data), 4,700 have been used for training and the rest for testing. Although 'Walking Uphill' is often confused with some other similar activities, END has been found to classify all of the ten activities with a fairly high accuracy of 98.4%. On the other hand, the accuracies achieved by a decision tree, a k-nearest neighbor, and a one-versus-rest support vector machine have been observed as 97.6%, 96.5%, and 97.6%, respectively.

A study on the prediction of korean NPL market return (한국 NPL시장 수익률 예측에 관한 연구)

  • Lee, Hyeon Su;Jeong, Seung Hwan;Oh, Kyong Joo
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.2
    • /
    • pp.123-139
    • /
    • 2019
  • The Korean NPL market was formed by the government and foreign capital shortly after the 1997 IMF crisis. However, this market is short-lived, as the bad debt has started to increase after the global financial crisis in 2009 due to the real economic recession. NPL has become a major investment in the market in recent years when the domestic capital market's investment capital began to enter the NPL market in earnest. Although the domestic NPL market has received considerable attention due to the overheating of the NPL market in recent years, research on the NPL market has been abrupt since the history of capital market investment in the domestic NPL market is short. In addition, decision-making through more scientific and systematic analysis is required due to the decline in profitability and the price fluctuation due to the fluctuation of the real estate business. In this study, we propose a prediction model that can determine the achievement of the benchmark yield by using the NPL market related data in accordance with the market demand. In order to build the model, we used Korean NPL data from December 2013 to December 2017 for about 4 years. The total number of things data was 2291. As independent variables, only the variables related to the dependent variable were selected for the 11 variables that indicate the characteristics of the real estate. In order to select the variables, one to one t-test and logistic regression stepwise and decision tree were performed. Seven independent variables (purchase year, SPC (Special Purpose Company), municipality, appraisal value, purchase cost, OPB (Outstanding Principle Balance), HP (Holding Period)). The dependent variable is a bivariate variable that indicates whether the benchmark rate is reached. This is because the accuracy of the model predicting the binomial variables is higher than the model predicting the continuous variables, and the accuracy of these models is directly related to the effectiveness of the model. In addition, in the case of a special purpose company, whether or not to purchase the property is the main concern. Therefore, whether or not to achieve a certain level of return is enough to make a decision. For the dependent variable, we constructed and compared the predictive model by calculating the dependent variable by adjusting the numerical value to ascertain whether 12%, which is the standard rate of return used in the industry, is a meaningful reference value. As a result, it was found that the hit ratio average of the predictive model constructed using the dependent variable calculated by the 12% standard rate of return was the best at 64.60%. In order to propose an optimal prediction model based on the determined dependent variables and 7 independent variables, we construct a prediction model by applying the five methodologies of discriminant analysis, logistic regression analysis, decision tree, artificial neural network, and genetic algorithm linear model we tried to compare them. To do this, 10 sets of training data and testing data were extracted using 10 fold validation method. After building the model using this data, the hit ratio of each set was averaged and the performance was compared. As a result, the hit ratio average of prediction models constructed by using discriminant analysis, logistic regression model, decision tree, artificial neural network, and genetic algorithm linear model were 64.40%, 65.12%, 63.54%, 67.40%, and 60.51%, respectively. It was confirmed that the model using the artificial neural network is the best. Through this study, it is proved that it is effective to utilize 7 independent variables and artificial neural network prediction model in the future NPL market. The proposed model predicts that the 12% return of new things will be achieved beforehand, which will help the special purpose companies make investment decisions. Furthermore, we anticipate that the NPL market will be liquidated as the transaction proceeds at an appropriate price.

Critical Success Factor of Noble Payment System: Multiple Case Studies (새로운 결제서비스의 성공요인: 다중사례연구)

  • Park, Arum;Lee, Kyoung Jun
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.4
    • /
    • pp.59-87
    • /
    • 2014
  • In MIS field, the researches on payment services are focused on adoption factors of payment service using behavior theories such as TRA(Theory of Reasoned Action), TAM(Technology Acceptance Model), and TPB (Theory of Planned Behavior). The previous researches presented various adoption factors according to types of payment service, nations, culture and so on even though adoption factors of identical payment service were presented differently by researchers. The payment service industry relatively has strong path dependency to the existing payment methods so that the research results on the identical payment service are different due to payment culture of nation. This paper aims to suggest a successful adoption factor of noble payment service regardless of nation's culture and characteristics of payment and prove it. In previous researches, common adoption factors of payment service are convenience, ease of use, security, convenience, speed etc. But real cases prove the fact that adoption factors that the previous researches present are not always critical to success to penetrate a market. For example, PayByPhone, NFC based parking payment service, successfully has penetrated to early market and grown. In contrast, Google Wallet service failed to be adopted to users despite NFC based payment method which provides convenience, security, ease of use. As shown in upper case, there remains an unexplained aspect. Therefore, the present research question emerged from the question: "What is the more essential and fundamental factor that should takes precedence over factors such as provides convenience, security, ease of use for successful penetration to market". With these cases, this paper analyzes four cases predicted on the following hypothesis and demonstrates it. "To successfully penetrate a market and sustainably grow, new payment service should find non-customer of the existing payment service and provide noble payment method so that they can use payment method". We give plausible explanations for the hypothesis using multiple case studies. Diners club, Danal, PayPal, Square were selected as a typical and successful cases in each category of payment service. The discussion on cases is primarily non-customer analysis that noble payment service targets on to find the most crucial factor in the early market, we does not attempt to consider factors for business growth. We clarified three-tier non-customer of the payment method that new payment service targets on and elaborated how new payment service satisfy them. In case of credit card, this payment service target first tier of non-customer who can't pay for because they don't have any cash temporarily but they have regular income. So credit card provides an opportunity which they can do economic activities by delaying the date of payment. In a result of wireless phone payment's case study, this service targets on second of non-customer who can't use online payment because they concern about security or have to take a complex process and learn how to use online payment method. Therefore, wireless phone payment provides very convenient payment method. Especially, it made group of young pay for a little money without a credit card. Case study result of PayPal, online payment service, shows that it targets on second tier of non-customer who reject to use online payment service because of concern about sensitive information leaks such as passwords and credit card details. Accordingly, PayPal service allows users to pay online without a provision of sensitive information. Final Square case result, Mobile POS -based payment service, also shows that it targets on second tier of non-customer who can't individually transact offline because of cash's shortness. Hence, Square provides dongle which function as POS by putting dongle in earphone terminal. As a result, four cases made non-customer their customer so that they could penetrate early market and had been extended their market share. Consequently, all cases supported the hypothesis and it is highly probable according to 'analytic generation' that case study methodology suggests. We present for judging the quality of research designs the following. Construct validity, internal validity, external validity, reliability are common to all social science methods, these have been summarized in numerous textbooks(Yin, 2014). In case study methodology, these also have served as a framework for assessing a large group of case studies (Gibbert, Ruigrok & Wicki, 2008). Construct validity is to identify correct operational measures for the concepts being studied. To satisfy construct validity, we use multiple sources of evidence such as the academic journals, magazine and articles etc. Internal validity is to seek to establish a causal relationship, whereby certain conditions are believed to lead to other conditions, as distinguished from spurious relationships. To satisfy internal validity, we do explanation building through four cases analysis. External validity is to define the domain to which a study's findings can be generalized. To satisfy this, replication logic in multiple case studies is used. Reliability is to demonstrate that the operations of a study -such as the data collection procedures- can be repeated, with the same results. To satisfy this, we use case study protocol. In Korea, the competition among stakeholders over mobile payment industry is intensifying. Not only main three Telecom Companies but also Smartphone companies and service provider like KakaoTalk announced that they would enter into mobile payment industry. Mobile payment industry is getting competitive. But it doesn't still have momentum effect notwithstanding positive presumptions that will grow very fast. Mobile payment services are categorized into various technology based payment service such as IC mobile card and Application payment service of cloud based, NFC, sound wave, BLE(Bluetooth Low Energy), Biometric recognition technology etc. Especially, mobile payment service is discontinuous innovations that users should change their behavior and noble infrastructure should be installed. These require users to learn how to use it and cause infra-installation cost to shopkeepers. Additionally, payment industry has the strong path dependency. In spite of these obstacles, mobile payment service which should provide dramatically improved value as a products and service of discontinuous innovations is focusing on convenience and security, convenience and so on. We suggest the following to success mobile payment service. First, non-customers of the existing payment service need to be identified. Second, needs of them should be taken. Then, noble payment service provides non-customer who can't pay by the previous payment method to payment method. In conclusion, mobile payment service can create new market and will result in extension of payment market.