• Title/Summary/Keyword: Building energy needs

Search Result 157, Processing Time 0.021 seconds

Monthly Heating Energy Needs Analysis According to ISO 13790 and ISO 52016 (ISO 13790과 ISO 52016에 의한 월별 난방에너지 소요량 분석)

  • Zo, Chung-Hoon;Yun, Geun-Young
    • Journal of the Korean Solar Energy Society
    • /
    • v.39 no.5
    • /
    • pp.11-28
    • /
    • 2019
  • Governments are increasing energy efficiency in buildings through various policies to reduce building energy consumption. In 2002, the European Union adopted a building energy performance guideline to set minimum efficiency standards for residential and commercial buildings. Starting in 2020, all EU member states should ensure that all buildings are Near-Zero Energy Buildings (NZEB). In Korea, the government issued a zero-energy certification system. Since 2020, public buildings are required to cover energy consumption with the energy produced in buildings. As the demand for building energy simulation has increased to increase the energy efficiency of these buildings, the International Standard Organization (ISO) has created a standard for calculating building energy requirements called ISO 13790. This standard was revised to ISO 52016 in 2017. In this research, ISO 13790, which calculates the energy needs of existing buildings, and ISO 52016, which replaces them, are compared and analyzed, and applied to the calculation of heating energy needs of buildings. For models without thermal zoning(Case A), the difference in annual heating energy needs calculated from each criterion is $1.08kWh/m^2$, which is about 2% higher in ISO 52016. In the case of the thermal zoning model(Case B), the difference in annual heating energy needs calculated by each standard was $0.97kWh/m^2$, which was about 2% higher than ISO 52016. The heating energy needs model without thermal zoning has a higher energy needs than the heating energy needs model with thermal zoning. It is about 16% energy at $8.58kWh/m^2$ for ISO 13790 and $8.69kWh/m^2$ for ISO 52016.

Comparison Analysis of Building's Heating Energy Consumption in the Apartment Complex - Focused on Apartment in Daejeon - (공동주택 단지 내 동별 난방에너지소요량 비교 분석 - 대전지역 아파트단지를 중심으로 -)

  • Jang, Young-Hye;Kim, Jeong-Gook;Kim, Jonghun;Jeong, Hakgeun;Hong, Won-Hwa;Jang, Cheol-Yong
    • KIEAE Journal
    • /
    • v.15 no.3
    • /
    • pp.37-42
    • /
    • 2015
  • Purpose: Apartment is a typical residential type in Korea. In the past, apartment types were very monotonous. But today, the types of complex are changed because personal needs have been diversified and personalized. In order to meet those needs, construction companies are constructing various types of apartments. The more apartment types are diverse, the more the energy problems are taken place. So, the purpose of this study is to solve the problem of energy gap in the same complex through improving the thermal transmittance of wall. Method: Heating energy consumption of Building Energy Efficiency Rating System and heating energy usage of apartment show a similar trend on the graph. In order to identify the best position of heating energy consumption difference reduction, we change the building's U-value of front, back, side walls. Result: In the A complex, maximum and minimum heating energy consumption building's shapes are flat. the best efficiency is side U-value change and the worst is front change. In the E complex, maximum heating energy consumption building's shape is tower and minimum building shape is flat. Consequently, the front and back wall performance change was little effect to reduce energy gap, while the change of side wall's U-value show the great reduction between building's energy consumptions.

A Research on the Renovation Situation of the Business Buildings (업무시설의 리노베이션 현황에 관한 조사 연구)

  • Lee, Hyun-Jeong;Shim, Myung-Sup
    • Journal of the Korea Institute of Building Construction
    • /
    • v.2 no.2
    • /
    • pp.121-127
    • /
    • 2002
  • The functions and uses of existing buildings are not properly changing as modern life needs. As a result, the frequent reconstruction(construction after removal) of existing buildings have been done but it became more and more difficult because of strengthening of regulations and systems concerning construction. And also it has several disadvantages like lower plot ratio and site coverage than existed buildings, enormous construction cost, production of waste-construction materials and thoughtless consumption of natural resources, which gives rise to environmental pollution. Therefore renovation is brought to the fore. In Korea, many business buildings were constructed in 1960s-1970s, during the period of high growth. Such buildings needs to be repaired in whole. It is caused by the change of social, economic, and cultural conditions and deterioration of equipments. Therefore renovation meets some necessary conditions; recovery of building functions and extension of building life span. In case study, the present state of renovation in business buildings is 1) Basic safety, for example, fire prevention and crime prevention, is great important. 2) Advanced technology, INS(international news service), IBS(Intelligent Building System), and internationalization, is pursued for adapting to multimedia ages. 3) It tries to promote proficiency, and to save the energy using spatial environment and natural energy(light and sound). Also, improving comfortable level of users and installing equipments for physically handicapped person needs to be considered.

Power conversion control for zero emission buildings (탄소제로 빌딩을 위한 전력변환 제어)

  • Han, Seok-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2011.07a
    • /
    • pp.504-505
    • /
    • 2011
  • Decreasing actual greenhouse gas will be difficult if it is not solved addressed in architectural fields. Zero emission building or zero energy building, maximize the efficiency of energy, which means the building can operate by their own renewable energy facility without any other supplying. To be a zero emission building, a building needs realization of high efficiency low energy consumption, construction of building its own energy production facilities and lastly a power grid connection. According to increasing of DC load about TV, LED lighting, computer, IT in building for living and business, it is expected the save of energy when the system of AC power distribution change into the system of DC power distribution. Renewable energy exists a big different rate produced by outside environment. When electrical power overproduce, it can supply for system. Otherwise, if electrical power produce less, it can receive supply from system. Send and receive power can lead to zero to annual standard. This paper shows the simulation about efficient control of power conversion which is related to DC power distribution of architecture and DC output of renewable energy by using L-type converter.

  • PDF

Development and Application of Passive Climatic Design Tool Using Building Bioclimatic Chart for Energy Efficient Building (건물생체기후도를 이용한 자연형 기후설계 도구 개발 및 활용)

  • Song, Seung-Yeong
    • KIEAE Journal
    • /
    • v.4 no.3
    • /
    • pp.153-160
    • /
    • 2004
  • It is essential to know climatic characteristics of the site for energy efficient building design. However, it is difficult to obtain a climate data. Even though the climate data is obtained, it is difficult to be applied to the building design since it is usually consisted of just series of numbers. Also, designers cannot know the effective climatic design strategies suitable for the site with ease. Thus, this study aims to develope the climatic design tool working on the personal computer operated by windows 95/98/2000/XP. WYEC weather data and building bioclimatic chart are adopted for the climate analysis. Climatic Characteristics(distributions of the dominant factors, bioclimatic needs, needs to each passive design strategy, and the order of priority, etc.) of Seoul are analysed and presented as an example. Also, passive climatic design process making use of this tool is presented.

Analysis of Building Energy using Automated Weather System Data (자동 기상관측 자료를 이용한 건축물 에너지 분석)

  • Lee, Kwi-Ok;Kang, Dong-Bae;Lee, Kang-Yoel;Jung, Woo-Sik;Sim, Je-Hean;Yoon, Seong-Hwan
    • Journal of Environmental Science International
    • /
    • v.23 no.3
    • /
    • pp.493-502
    • /
    • 2014
  • EnergyPlus is a whole building energy simulation program that engineers, architects, and researchers use to model energy and water use in buildings. Modeling the performance of a building with EnergyPlus enables building professionals to optimize the building design to use less energy and water. This program provides energy analysis of building and needs weather data for simulation. Weather data is available for over 2,000 locations in a file format that can be read by EnergyPlus. However, only five locations are avaliable in Korea. This study intends to use AWS data for having high spatial resolution to simulate building energy. The result of this study shows the possibility of using AWS data for energy simulation of building.

A Study on Development of Simplified Thermal Load Calculation Program for Building Energy Analysis (건물에너지 해석을 위한 간이열부하 해석프로그램 개발에 관한 연구)

  • Kang, Yoon-Suk;Um, Mi-Eun;Ihm, Pyeong-Chan;Park, Jong-Il
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.72-77
    • /
    • 2008
  • About 25% of overall energy use of Korea had been spent in buildings. It is crucial to acknowledge the importance of saving energy in buildings. In order to save energy, it is important to predict accurate energy use. There are numerous energy simulation program that predicts both energy load and energy use. The problem of the energy simulation program is that it holds too many input variables, and it needs experts to model a building. So, our purpose of this study is to develop the simplified thermal load calculation program for building energy analysis which eliminates coordinates of building components instead of using full coordinates by using DOE2. Since the engine of the program is DOE2, we verified the validity of S-DOE by comparing peak heating & cooling load results and annual energy use results. The results shows that there are little difference between VisualDOE and S-DOE. Also it showed that S-DOE took less time to input variables than VisualDOE. These results reveals that the application of S-DOE is possible to accurately predict energy load and energy use of the building and still have strong point that it takes less time to analyse building energy.

  • PDF

An Analysis on the Energy Consumption Unit of the Public buildings in Daegu (대구시 공공건축물의 에너지 소비 원단위에 관한 연구)

  • Choe, Jeong-Hui;Kim, Ju-Young;Hong, Won-Hwa
    • Proceeding of Spring/Autumn Annual Conference of KHA
    • /
    • 2005.11a
    • /
    • pp.319-322
    • /
    • 2005
  • An energy problem has become one of the many Problems awaiting solution to human society. Energy needs to support not only industry, but also building in city. The types of residential building, office building and public building account for much proportion among the totally amount used energy. A public institution shows a fine example for an energy conservation in the present situation. But, the amount used energy of electricity, air-conditioning and heating is different from a building use and condition. Because the building data of the energy consumption by a load is insufficient, it is unable to select a proper energy source. According to this study, it analyzed an energy load by each building that had investigated the actual conditions of energy consumption about public buildings in Daegu City. In order to plan the efficient energy use both existing buildings and new buildings, this study will present the efficient energy use plan, which has operated to new buildings of a public institution, at present.

  • PDF

A Study on the Improvement of New and Renewable Energy Certification Criteria in the Green Building Certification System (녹색건축 인증제도의 신·재생에너지 인증기준 개선에 관한 연구)

  • Lee, Mi-Ryeong;Park, Ji-Hye;Haan, Chan-Hoon;Tae, Choon-Seob
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.4
    • /
    • pp.80-88
    • /
    • 2013
  • Deploying new and renewable energy should be encouraged due to scarce of natural resources and to reduce the $CO_2$ emission. Regarding the Green Building Certification System, '2.2.1 new and renewable energy use', and '2.3.1 carbon dioxide emission reductions' are related to new and renewable energy. Applying new and renewable energy can achieve the score in two criteria mentioned above and most of buildings get a perfect score in the green building certification system. So these criteria needs to be revised to have discrimination. In this study, supply rate of new and renewable energy of the buildings that have achieved Green Building Certification by E Green Building Certification Institute was analyzed. The improvement of assessment criteria related to new and renewable energy is proposed and could be applied to the revisions.

Anomaly Detection and Diagnostics (ADD) Based on Support Vector Data Description (SVDD) for Energy Consumption in Commercial Building (SVDD를 활용한 상업용 건물에너지 소비패턴의 이상현상 감지)

  • Chae, Young-Tae
    • Journal of Korean Institute of Architectural Sustainable Environment and Building Systems
    • /
    • v.12 no.6
    • /
    • pp.579-590
    • /
    • 2018
  • Anomaly detection on building energy consumption has been regarded as an effective tool to reduce energy saving on building operation and maintenance. However, it requires energy model and FDD expert for quantitative model approach or large amount of training data for qualitative/history data approach. Both method needs additional time and labors. This study propose a machine learning and data science approach to define faulty conditions on hourly building energy consumption with reducing data amount and input requirement. It suggests an application of Support Vector Data Description (SVDD) method on training normal condition of hourly building energy consumption incorporated with hourly outdoor air temperature and time integer in a week, 168 data points and identifying hourly abnormal condition in the next day. The result shows the developed model has a better performance when the ${\nu}$ (probability of error in the training set) is 0.05 and ${\gamma}$ (radius of hyper plane) 0.2. The model accuracy to identify anomaly operation ranges from 70% (10% increase anomaly) to 95% (20% decrease anomaly) for daily total (24 hours) and from 80% (10% decrease anomaly) to 10%(15% increase anomaly) for occupied hours, respectively.