• 제목/요약/키워드: Building energy consumption

검색결과 895건 처리시간 0.028초

건물 외피 창호면적 변화에 따른 에너지 소비량에 관한 연구 (Study on the Analysis of Energy Consumption Corresponding Window Area Ratio)

  • 하대웅;박경순;손원득
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 하계학술발표대회 논문집
    • /
    • pp.857-862
    • /
    • 2008
  • Window is the most demanding design component in the building design. Recently, window area in the building surface has been increased significantly in the office building. As window area increased significantly, however, the thermal load has been increased significantly due to lack of thermal performance of the outside wall. In this paper, we discussed the energy consumption of the buildings according to window area ratio. Two types of building for energy consumption analysis were made by Designbuilder v.1.4 and Energyplus v.2.0. Window area ratio was five different types ($30%{\sim}70%$) in each building. As a result, the cooling energy consumption has been decreased as window area decreased in each building. Whereas the heating energy consumption has been increased window area decreased.

  • PDF

공조방식에 따른 사무소 건물의 에너지 성능 평가 (A Simulation Appraisal of Energy Performance in Office Building by Different Types of Air-Conditioning)

  • 최종대;최동석;윤근영
    • 설비공학논문집
    • /
    • 제24권8호
    • /
    • pp.612-620
    • /
    • 2012
  • High economic growth causes increase of the building energy consumption. The energy consumption for HVAC system accounts for 40~50% of the whole building consumption. The trend for building is large-scale and high-rise. Because of the trend, the energy consumption is becoming bigger than before. Nowadays, HVAC system design are recognized as the solution for a energy-saving. This paper is focused on the energy performance evaluation of central air-conditioning system(water-based) and system air-conditioning that were applied to the office building. The systems are modeled and simulated by using EnergyPlus Software 6.0. After the Simulation, annual cooling and heating energy consumption were calculated. It was found that the system air-conditioning can reduce the energy consumption approximately 55.24% annually compared with the central air-conditioning system(water-cooled). In addition, about 46.13% of annual operating costs can be reduced by use of system air-conditioning.

공동주택에서 외피단열성능기준 강화에 따른 건축물에너지 효율등급 변화에 관한 연구 (A Study on the Building Energy Efficiency Rating Changes by Enhanced Thermal Insulation Performance of Building Envelope Standards in Apartment Houses)

  • 조영욱;박선효;정광섭
    • 설비공학논문집
    • /
    • 제29권2호
    • /
    • pp.89-95
    • /
    • 2017
  • This study aimed to compare the primary heating energy consumption of regional apartment houses based on the enhanced thermal insulation performance of building envelope standards. The difference of the heating energy consumption based on the enhanced thermal insulation performance of building envelope standards in the southern region, the largest regional difference in primary heating energy consumption, is $10.3kWh/(m^2{\cdot}year)$. The difference of the heating energy consumption based on the enhanced thermal insulation performance of building envelope standards in the central region is $8.0{\sim}8.5kWh/(m^2{\cdot}year)$ and that of the Jeju region is $0.5kWh/(m^2{\cdot}year)$. These energy consumption differences do not result in building energy efficiency ratings changing. The building energy efficiency ratings have the possibility to be changed.

기존 학교 건물의 외피 성능 개선 방안에 관한 연구 (The Improvement of Building Envelope Performance in Existing School Building)

  • 방아영;박세현;김진희;김용재;김준태
    • KIEAE Journal
    • /
    • 제15권4호
    • /
    • pp.69-76
    • /
    • 2015
  • Purpose: This study is to investigate the effects of facade insulation and window remodeling of an existing old middle school building on the reduction of energy consumption. Method: To analyze energy performance of building, using DesignBuilder v3.4, building energy simulation tool based EnergyPlus engine. Energy consumption and problem of target building was analyzed based on data and survey. Based on building energy simulations it analyzed the variation of energy demand for the building according to U-value of wall, glazing properties and external shading devices. Result: When insulation of building was reinforced, cooling and heating load was decreased. Glazing properties that minimize cooling and heating energy consumption were analyzed. In conclusion, it is important to choose SHGC and U-value of window fit in characteristic of target building. Setting external blind for cooling load decreases 5%.

Heating and Cooling Energy Conservation Effects by Green Roof Systems in Relation with Building Location, Usage and Number of Floors

  • Son, Hyeong Min;Park, Dong Yoon;Chang, Seong Ju
    • KIEAE Journal
    • /
    • 제14권2호
    • /
    • pp.11-19
    • /
    • 2014
  • Building energy consumption takes up almost 25% of the total energy consumption. Therefore, diversified ways, such as improving wall and window insulation, have been considered to reduce building energy consumption. Recently, green roof system has been explored as an effective alternative for dealing with reducing heating and cooling energy, thermal island effect and improving water quality. However, recent studies regarding a green roof system have only focused on building energy reduction without considering the applied usage, location, and story of the green roof system. Therefore, this study pays attention to the heating and cooling energy in relation to the applied usage, location, and story of a green roof system for investigating its impact on energy reduction. The result of simulations show that the reduction in heating energy consumption is higher when applied to Cherwon-gun province which has a continental climate condition, compared to the city of Busan that is distinguished by its warm climate. Cooling energy saving turns out to be higher when the green roof system is applied to Busan in comparison with Cherwon. As for the applied usage or function of the building, residential space acquires the highest heating and cooling energy saving effect rather than commerce, educational or office space because of HVAC's running time based on usage. When it comes to the story of the green roof, both heating and cooling energy saving become the highest when the green roof is applied to single-storied buildings. The reason is that single story building is affected by the ground largely. Generally, the variations of heating energy consumption are larger than the cooling energy consumption. The outcome of the simulations, when a green roof system is applied, indicates that the energy consumption reduction rate is dynamically responding to the applied usage, location, and story. Therefore, these factors should be counted closely for maximizing the reduction of energy consumption through green roof systems.

공동주택 단지 내 동별 난방에너지소요량 비교 분석 - 대전지역 아파트단지를 중심으로 - (Comparison Analysis of Building's Heating Energy Consumption in the Apartment Complex - Focused on Apartment in Daejeon -)

  • 장영혜;김정국;김종훈;정학근;홍원화;장철용
    • KIEAE Journal
    • /
    • 제15권3호
    • /
    • pp.37-42
    • /
    • 2015
  • Purpose: Apartment is a typical residential type in Korea. In the past, apartment types were very monotonous. But today, the types of complex are changed because personal needs have been diversified and personalized. In order to meet those needs, construction companies are constructing various types of apartments. The more apartment types are diverse, the more the energy problems are taken place. So, the purpose of this study is to solve the problem of energy gap in the same complex through improving the thermal transmittance of wall. Method: Heating energy consumption of Building Energy Efficiency Rating System and heating energy usage of apartment show a similar trend on the graph. In order to identify the best position of heating energy consumption difference reduction, we change the building's U-value of front, back, side walls. Result: In the A complex, maximum and minimum heating energy consumption building's shapes are flat. the best efficiency is side U-value change and the worst is front change. In the E complex, maximum heating energy consumption building's shape is tower and minimum building shape is flat. Consequently, the front and back wall performance change was little effect to reduce energy gap, while the change of side wall's U-value show the great reduction between building's energy consumptions.

A Study on Open BIM based Building Energy Evaluation based on Quantitative Factors

  • 김인한;진진;최중식
    • 한국CDE학회논문집
    • /
    • 제15권4호
    • /
    • pp.289-296
    • /
    • 2010
  • Energy consumption by buildings accounts for a large part of the world‘s energy consumption. Methods to analyze building energy consumption before construction have been studied for decades. With BIM (Building Information Modeling) technology, architects can easily export building information to data models in order to analyze the design‘s effect on building energy efficiency. Although several BIM-based energy simulation applications are currently available, utilizing these applications for energy efficiency simulation is difficult. In this paper, by comparing existing BIM-based energy applications, the authors test the building energy efficiencies estimated by some BIM models, offer ideas and solutions to problems that appeared during the test process and propose new methods for BIM-based energy evaluation based on quantitative factors.

재실밀도의 변화에 따른 건물에너지 사용량 분석을 위한 예비조사 (A Preliminary Study the Effect of Occupancy Densities on Building Energy Consumption)

  • 최종대;윤근영
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2011년도 추계학술발표대회 논문집
    • /
    • pp.130-133
    • /
    • 2011
  • This paper reports the Survey results from a field monitoring study of office occupancy densities. The field measurement of a office in Yongin was carried out from 19 September to 30 September 2011. The survey has an aim to reveal the building energy consumption relationship between occupancy densities of a realistic office and the previous studies. The results showed that hourly occupied density of the previous studies is more higher than a field survey. we investigated the effects of difference occupancy densities on annual heating and cooling energy consumption using EnergyPlus. Heating and cooling consumption was raised because of the increased occupancy density. therefore, accurately measure the occupnacy schedule is important in order to reduce excessive building energy consumption, and is an significant element to be considered in the energy simulation.

  • PDF

기존 건축물의 에너지소비량 절감목표 산정 방법 - 에너지소비량 실적 데이터 기반 - (A Method for Setting Energy Saving Goals of Existing Buildings - Based Energy Consumption Results Data -)

  • 여창재;유정호;문현석;김승진
    • 한국건설관리학회논문집
    • /
    • 제16권3호
    • /
    • pp.123-131
    • /
    • 2015
  • 온실가스 배출 감소 및 에너지소비량을 감소시키기 위하여 많은 정책들이 수립되고 있다. 그러나 이러한 정책은 건축물의 에너지 소비 특성을 고려하지 않고 건축물에 대하여 일괄적인 에너지 절감률을 적용하고 있다. 일괄적인 에너지소비량 절감율을 일괄적으로 적용할 경우, 에너지소비량이 적은 건축물은 이를 달성 할 수 없다. 따라서 본 연구에서는 건축물의 에너지소비특성에 따른 건축물 분류와 건축물의 에너지소비량에 따른 개별적인 에너지소비량 절감률 산정 방법에 대하여 연구하였다. 에너지소비량 특성 분석결과 건축물의 용도에 따라 에너지소비량 차이가 있음이 나타났다. 또한 이를 바탕으로 건축물을 분류하였다. 또한 기존의 건축물 에너지절감과 관련한 제도들을 분석하여 건축물의 에너지소비량 절감 목표 및 대상 등을 선정하였고. 이을 바탕으로 에너지소비량에 따른 에너지 소비량 절감률 공식을 제안하였다. 또한 서울시 공공건축물 중 제1종 근린생활시설에 본 연구에서 제안한 공식을 적용할 경우 국가 온실가스 배출로드맵에서 목표로 하고 있는 절감률 26%를 달성할 수 있음을 확인하였다. 본 연구를 통하여 건축물의 개별적인 목표 에너지절감률을 산정할 수 있지만, 건축물 목표 에너지 절감률을 실제건축물에 반영하기 위해서는 건축물의 에너지소비량과 에너지소요량의 관계 및 건축물에서 절감 가능한 에너지소비량에 대한 연구가 필요하다.

1인 가구 거주자의 생활패턴이 고려된 에너지소요량 유형 분석 (An Analysis of Energy Consumption Types Considering Life Patterns of Single-person Households)

  • 이승희;정성원;임기택
    • 대한건축학회논문집:계획계
    • /
    • 제35권1호
    • /
    • pp.37-46
    • /
    • 2019
  • The energy of the building is influenced by the user 's activity due to the population, society, and economic characteristics of the building user. In order to obtain accurate energy information, the difference in the amount of energy consumption by the activities and characteristics of building users should be identified. The purpose of the study is to identify the difference in the amount of energy consumption by the user's activities in the same building, and to analyse the relationship between user's activities and demographic, social and economic characteristics. For research, energy simulation is performed based on actual user activity schedule. The results of the simulation were clustered by using K-Means clustering, a machine learning technique. As a result, four types of users were derived based on the amount of energy consumption. The more energy used in a cluster, the lower the user's income level and older. The longer a user's indoor activity times, the higher the energy use, and these activities relate to the user's characteristics. There is more than twice the difference between the group that uses the least energy consumption and the group that uses the most energy consumption.