• Title/Summary/Keyword: Building energy consumption

Search Result 891, Processing Time 0.028 seconds

Analysis on the Impact of Load Factors in Building Energy Simulation Affecting Building Energy Consumption (에너지시뮬레이션에서의 부하요소가 건물에너지사용량에 미치는 영향 분석)

  • Yoon, Kap-Chun;Jeon, Jong-Ug;Kim, Kang-Soo
    • KIEAE Journal
    • /
    • v.11 no.4
    • /
    • pp.71-78
    • /
    • 2011
  • The goal of this study is to analyze the impact of load factors on building energy consumption by using EnergyPlus program. We selected a campus building and monitored energy consumption from January 2009 to November 2010. First, we simulated energy consumption basically with weather data, building heat gain and EHP performance data. And then we simulated energy consumption with three additional parameter(infiltration, OA control and schedule). Simulation results are verified by MBE and Cv(RMSE) proposed by M&V guideline 3.0. Simulated total energy consumption was 104.3% of measurements, 4.33% of MBE, and 13.62% of Cv(RMSE). Results show infiltration and schedule were revealed as the most dominant factor of heating energy consumption and of cooling energy consumption, respectively.

Characteristics of Energy Consumption in an Office Building located in Seoul (사무소건물의 용도 및 측정기간에 따른 에너지 소비 특성)

  • Park Byung-Yoon;Chung Kwang-Seop
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.1
    • /
    • pp.82-87
    • /
    • 2005
  • The purpose of this study is to suggest the characteristics and actual state of energy consumption by the analysis of energy consumption data in an office building. This study examines and analyzes daily and monthly energy consumption of an office building located in Seoul, Korea regarding type of load and business classification within a building. The results are as follows. 1) Energy consumption of office building for each type of load show similar consumption patterns, regardless of seasons such as cooling period and heating period. 2) Out of all annual energy consumption, consumption for lighting took about $43\;\%,$ general electric Power about $23\;\%,$ emergency power $25\;\%,$ computer center $5\;\%$ and cooling power $4\;\%,$ showing that the consumption for lighting was highest, and the percentage of energy consumption for cooling power for operation of cooling facilities took the lowest percentage. 3) Annual gas consumption used for heating and hot water supply were $38,\;36\;\%$ for officetel and office respectively, and $26\;\%$ for arcade. 4) Electricity consumptions used for cooling power for each use of building, office and officetel recorded in July and August of cooling seasons. Even though it shows different patterns for each month, energy consumption showed unique pattern throughout the cooling seasons.

Study of Comparison on Energy Consumption Based on HVAC area along Floor in High Rise Building (고층빌딩의 층별 에너지 사용량 비교에 관한 연구)

  • Park, Woo-Pyeng;Choi, Byong-Jeong;Kim, Jin-Ho
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.14 no.4
    • /
    • pp.1-6
    • /
    • 2018
  • In this study, the energy consumption of the typical floor was compared by the total energy comsumption of the building in highrise building. In gerneral, many researchers are studying on the typical floor in highrise buildings for avoiding complexity in energy simulation. But few papers are studied on energy consumption along the floors. In the model bulding, the energy consumption data were acquired by BEMS system in 2011. According the data, the total net energy consumption was $193.99kWh/m^2$ for all area and the total net energy consumption was $247.61kWh/m^2$ for HVACR area. The total electricity and gas energy are used 47.7% for heating and cooling, 33.5% for lighting and plug, 12.9% for conveyance power and 5.9% for restaurant. In comparison of only ground floor, amount of energy consumption in the lobby is 10%, and 90% of total energy consumption is used in the typical floor. For this result, energy simulation on the typical floor is acceptable for calculating the total energy consumption in the highrise building.

A Study on the Evaluation of Building Energy Rating considering the Insulation performance of the Window in Apartment houses (공동주택에서의 창호성능에 따른 건물에너지 효율등급 평가 연구)

  • Kim, Chi-Hoon;Ahn, Byung-Lip;Hong, Sung-Hee;Jang, Cheol-Yong
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.291-295
    • /
    • 2009
  • As a reasonable energy policy has become required because of consuming substantial amounts of oil than others, the studies on energy consumption are in work for energy savings of buildings that spend up to 24% of total energy consumption. However, there aren't basic data on energy consumption and installationregulations for effective equipments in energy guzzled buildings. The best plan to reduce the building energy consumption is that the insulation performance should be improved because the insulation and airtight of building envelopes have an effect on the energy consumption basically. Thus, we should prepare the alternatives to improve insulation performance of envelopes and the efficiency of insulation performance of the window for reducing energy consumption.

  • PDF

Study on Energy Consumption according to Building Envelope Performance and Indoor Temperature (건축물의 외피성능 및 실내온도에 따른 에너지 사용량에 관한 연구)

  • Yoo, Ho-Chun;Kang, Hyun-Gu
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.3
    • /
    • pp.101-108
    • /
    • 2011
  • This study aims to suggest an energy consumption improvement plan for university buildings through an analysis of energy consumption. Upon a simulation of subject building to interpret energy consumption, it was found that 154.07kWh/$m^2$ of energy is consumpted annually. Improvement of design elements can cut down the energy consumption to 135.61kWh/$m^2$ according to an energy reduction analysis related to envelope performance improvement. Additional improvement of lights and heat exchanger can curtail annual energy consumption to 108.32kWh/$m^2$. Also, an analysis of energy consumption while increasing indoor temperature gradually showed that the two factors are in proportion. $6^{\circ}C$ higher temperature requires over twice of the current energy. Based on this survey result, performance improvement due to building management and envelope elements which influence to building cooling and heating loads can curtail building energy consumption.

A Study on Analysis of Domestic Energy Consumption and Reduction Greenhouse Gas in Building (에너지 소비분석과 건축분야에서의 온실가스 저감 방안)

  • Park, Jong-Il;Park, Ryul
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.8 no.1
    • /
    • pp.1-6
    • /
    • 2012
  • This study aims to analysis domestic energy consumption in Korea and reduction greenhouse gas by building mechanical system. At this point be tormented the energy depletion and climate change of earth are big problems on the eatrh. In this paper we will find out best methods to reduction greenhouse gas and energy consumption by practical building mechanical system. Enlargement of greenhome and building adopt, greenhouse gas exhaust reduction in building, publication of energy consumption rate, publish building energy management manual, etc.

Analysis of Effects of Building Energy Consumption Characteristics on the Optimization Ratio for New and Renewable Energy Systems (건물에너지사용특성이 신재생에너지시스템 최적화 비율에 미치는 영향분석)

  • Lee, Yong-Ho;Hong, Jun-Ho;Kim, Yong-Kyoung;Cho, Young-Hum;Hwang, Jung-Ha
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.5
    • /
    • pp.117-126
    • /
    • 2014
  • This study developed a KRESS program designed to find the optimization ratio for new and renewable energy systems and analyze the effects of building energy consumption characteristics on the ratio. In spite of clear differences in predicted energy consumption and energy consumption by the loads among 18 facilities, the current formula for obligatory supply ratios applies a correction coefficient according to the building purposes based on energy consumption per each unit area in medical facilities and thus reflects no energy consumption characteristics according to the building purposes. The optimization ratio for new and renewable energy systems was the same for all facilities when the correction coefficients by the building purposes and new and renewable energy sources were all applied. When the correction coefficients were not applied, however, the optimization ratio varied according to building energy consumption characteristics. The findings raise a need to test the correction coefficients in order to select new and renewable energy systems that take into account energy consumption characteristics by the building purposes and loads and reflect economy, environmental performance, and technology.

Dynamic Simulation of Annual Energy Consumption in an Office Building by Thermal Resistance-Capacitance Method

  • Lee, Chang-Sun;Choi, Young-Don
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.6
    • /
    • pp.1-13
    • /
    • 1998
  • The basic heat transfer process that occurs in a building can best be illustrated by an electrical circuit network. Present paper reports the dynamic simulation of annual energy consumption in an office building by the thermal resistance capacitance network method. Unsteady thermal behaviors and annual energy consumption in an office building were examined in detail by solving the simultaneous circuit equations of thermal network. The results are used to evaluate the accuracy of the modified BIN method for the energy consumption analysis of a large building. Present thermal resistance-capacitance method predicts annual energy consumption of an office building with the same accuracy as that of response factor method. However, the modified BIN method gives 15% lower annual heating load and 25% lower cooling load than those from the present method. Equipment annual energy consumptions for fan, boiler and chiller in the HVAC system are also calculated for various control systems as CAV, VAV, FCU+VAV and FCU+CAV. FCU+CAV system appears to consume minimum annual energy among them.

  • PDF

Development and Application of the Calibration Method of Individual Building Energy Consumption (개별건물 에너지소비량 보정기법 개발 및 적용방안)

  • Kim, Dongil;Lee, Byeongho
    • Journal of the Korean Solar Energy Society
    • /
    • v.40 no.1
    • /
    • pp.15-24
    • /
    • 2020
  • Building energy consumption generally depends on living patterns of residents and outdoor air temperature changes. Although outdoor air temperature changes effect on building energy consumption, there is no calibration method for the comparison before and after Green Remodeling or BEMS installation etc., Big data of building energy consumption are collected and managed by 『National Integrated Management System of Building Energy』 in Korea, and they are utilized for the development of a calibration method for individual buildings as shown as the calibration method for small-area building stocks in the previous research. This study aims to develope a calibration method using big data of building energy consumption of individual buildings and outdoor air temperature changes, and to propose application of appropriate calibration methods for individual buildings or small-area building stocks according to the calibration purpose and conditions.

Measurement and Analysis of Energy Consumption of HVAC Equipment of a Research Building (연구용 건물의 열원 및 공조기기의 에너지 소비량 측정 및 분석)

  • Kim Seong-Sil;Kim Youngil
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.10
    • /
    • pp.914-922
    • /
    • 2004
  • In this study, measurement and analysis of energy consumption of a research building have been conducted. The energy audit procedure includes monitoring of electricity and LNG consumption over a period of three yews from 2000 to 2002. Data acquisition system for collecting energy consumption data of HVAC equipment such as chillers, fan filter units, AHUs, cooling towers, boilers, pumps, fan coil units, air compressors and etc. has been installed in a building located in Seoul. Data collected at an interval of 1 minute are analyzed for studying the energy consumption pattern of a research building. Percentage of energy consumption of all HVAC equipment is $51.0\%$ in 2000, $55.4\%$ in 2001, and $62.3\%$ in 2002, respectively. Electricity consumption of chillers accounts for $17.6\%$ of the total energy consumption, which is the largest. Annual energy consumption-rate per unit area is $840.5Mcal/m^2{\cdot}y$ in 2000, $1,064.8Mcal/m^2{\cdot}y$ in 2001, and $1,393.0Mcal/m^2{\cdot}y$ year 2002, respectively.