• 제목/요약/키워드: Building damages

검색결과 352건 처리시간 0.028초

건물의 화재 위험성 평가를 위한 모델(Model) 개발 (A Development of Model for Fire Hazard Assessment in the Buildings)

  • 이수경;김수태
    • 한국화재소방학회논문지
    • /
    • 제10권4호
    • /
    • pp.29-36
    • /
    • 1996
  • 건축물 화재로 인한 인적, 물적 피해를 방지하기 위하여는 먼저 이들 시설, 설비에 존재하는 잠재위험요인을 찾아내고 위험이 얼마나 큰가를 분석하는 위험성 평가가 수행되어야 한다. 본 연구에서는 건물의 화재 위험성을 822개의 Checklist에 의해 평가하도록 하였으며, 정량적 평가를 위하여 주요 구성 요소를 10개의 대분류로 나누고, 가중치를 부여하여 100점 만점의 점수를 산출하도록 하였다. 건물의 실제평가를 통하여 평가 모델의 적정성을 검토한 결과, 본 모델은 일반 모든 건물에 대하여 평가 적용이 가능하도록 되었다. 또한 Checklist에 의한 세부적인 질문기법으로 작성되어 건물의 화재 위험성 평가를 수월하게 수행할 수 있도록 하였다. 따라서 본 평가모델의 제시는 이제까지 국내에서 소방진단을 위한 뚜렷한 평가모델이 마련되지 못한 현시점에서 방화관리자 등 소방관련자에게 매우 유익한 평가모델이 될 것이다.

  • PDF

Seismic effectiveness of tuned mass dampers in a life-cycle cost perspective

  • Matta, Emiliano
    • Earthquakes and Structures
    • /
    • 제9권1호
    • /
    • pp.73-91
    • /
    • 2015
  • The effectiveness of tuned mass dampers (TMDs) in reducing the seismic response of civil structures is still a debated issue. The few studies regarding TMDs on inelastic structures indicate that they would perform well under moderate earthquake loading, when the structure remains linear or weakly nonlinear, while tending to fail under severe ground shaking, when the structure experiences strong nonlinearities. TMD seismic efficiency should be therefore rationally assessed by considering to which extent moderate and severe earthquakes respectively contribute to the expected cost of damages and losses over the lifespan of the structure. In this paper, a method for evaluating, in a life-cycle cost (LCC) perspective, the seismic effectiveness of TMDs on inelastic building structures is presented and exemplified on the SAC LA 9-storey steel moment-resisting frame benchmark building. Results show that the LCC concept may provide an appropriate alternative to traditional performance criteria for the evaluation of the effectiveness of TMDs and that TMD installation on typical existing middle-rise buildings in high seismic hazard regions may significantly reduce building lifetime cost despite the poor control performance observed under the most severe seismic events.

시그니처 시퀀스 기반 건물 내 메시지 전달특성 측정시스템 설계 (Design of Signal Measurement System for In-Building Propagation Characteristics based on Signature Sequence)

  • 김정호
    • 전자공학회논문지
    • /
    • 제52권1호
    • /
    • pp.3-6
    • /
    • 2015
  • 최근 들어 다양한 센서를 장착한 스마트 건물의 등장이 가시화 됨에 따라 센서로부터 데이터의 수집과 분석이 중요하게 되었다. 센서로부터 데이터를 획득하기 위해서는 일정구간의 유선화는 불가피하나 유선화 구간을 최소화하고 건물에 따라서는 센서간의 통신을 무선으로 함을 목표로 하고 있다. 이러한 케이블링에 따른 비용부담과 건물의 손상 등을 방지하기 위해서는 무선화가 가능한 구역의 선정 및 건물 구조에 따른 신호전달 특성을 객관적으로 파악하는 것이 매우 중요하다. 본 논문에서는 건물 내 신호전달 특성을 측정하기 위한 시스템의 설계를 다루고 시뮬레이션을 통해 시스템의 동작을 확인한다.

서울메트로 접지설비 표준화 방안 연구 (A Study on the Unification of the Grounding System of SeoulMetro)

  • 김균식;박한용;백유호
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2007년도 춘계학술대회 논문집
    • /
    • pp.1027-1036
    • /
    • 2007
  • Since the opening of the Seoul Metro in 1974, the electric railway passengers have been increased rapidly and as the advanced equipments(OC,PSD) were introduced, additional power facilities were built in a limited area for the comfortable transportation environment. Present grounding system were built according to old Electric equipment standards and all the electric signal, communication and electronic equipments were built only for the purposes of protecting building structure, people and electronic equipments. Grounding system which was additionally built in the limited area caused problems with the building structure and it caused secondary damages when earth fault happens. One of the problems is grounding system of the building structure; grounding system does not work properly since grounding equipments are not separated from each other. So, existing grounding system needs to be improved and unified grounding system in the building should be established. The purposed of this study is to analyze all the grounding systems that had been built in different year and to establish unified grounding system of Seoul Metro.

  • PDF

Seismic response characteristics of base-isolated AP1000 nuclear shield building subjected to beyond-design basis earthquake shaking

  • Wang, Dayang;Zhuang, Chuli;Zhang, Yongshan
    • Nuclear Engineering and Technology
    • /
    • 제50권1호
    • /
    • pp.170-181
    • /
    • 2018
  • Because of the design and construction requirements, the nuclear structures need to maintain the structural integrity under both design state and extreme earthquake shaking. The base-isolation technology can significantly reduce the damages of structures under extreme earthquake events, and effectively protect the safeties of structures and internal equipment. This study proposes a base-isolation design for the AP1000 nuclear shield building on considering the performance requirements of the seismic isolation systems and devices of shield building. The seismic responses of isolated and nonisolated shield buildings subjected to design basis earthquake (DBE) shaking and beyond-design basis earthquake (BDBE) shaking are analyzed, and three different strategies for controlling the displacements subjected to BDBE shaking are performed. By comparing with nonisolated shield buildings, the floor acceleration spectra of isolated shield buildings, relative displacement, and base shear force are significantly reduced in high-frequency region. The results demonstrate that the base-isolation technology is an effective approach to maintain the structural integrity which subjected to both DBE and BDBE shaking. A displacement control design for isolation layers subjected to BDBE shaking, which adopts fluid dampers for controlling the horizontal displacement of isolation layer is developed. The effectiveness of this simple method is verified through numerical analysis.

Progressive collapse vulnerability in 6-Story RC symmetric and asymmetric buildings under earthquake loads

  • Karimiyan, Somayyeh;Kashan, Ali Husseinzadeh;Karimiyan, Morteza
    • Earthquakes and Structures
    • /
    • 제6권5호
    • /
    • pp.473-494
    • /
    • 2014
  • Progressive collapse, which is referred to as the collapse of the entire building under local damages, is a common failure mode happened by earthquakes. The collapse process highly depends on the whole structural system. Since, asymmetry of the building plan leads to the local damage concentration; it may intensify the progressive collapse mechanism of asymmetric buildings. In this research the progressive collapse of regular and irregular 6-story RC ordinary moment resisting frame buildings are studied in the presence of the earthquake loads. Collapse process and collapse propagation are investigated using nonlinear time history analyses (NLTHA) in buildings with 5%, 15% and 25% mass asymmetry with respect to the number of collapsed hinges and story drifts criteria. Results show that increasing the value of mass eccentricity makes the asymmetric buildings become unstable earlier and in the early stages with lower number of the collapsed hinges. So, with increasing the mass eccentricity in building, instability and collapse of the entire building occurs earlier, with lower potential of the progressive collapse. It is also demonstrated that with increasing the mass asymmetry the decreasing trend of the number of collapsed beam and column hinges is approximately similar to the decreasing trend in the average story drifts of the mass centers and stiff edges. So, as an alternative to a much difficult-to-calculate local response parameter of the number of collapsed hinges, the story drift, as a global response parameter, measures the potential of progressive collapse more easily.

손상된 벽식 아파트 구조의 내진성능평가 (Seismic Performance Evaluation of Damaged Apartment building)

  • 김동영;장극관;서대원;천영수
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.431-436
    • /
    • 2002
  • The purpose of this study is to evaluate resistance capacity of the damaged wall structural system against earthquake ground accelerations. Two lumped damage models(5 story, 12 story) are investigated by nonlinear time history analysis. As a result of analyses, the effect of stiffness degradation due to structural damages might change the interstorydrift of the structure. Therefore the increasing interstorydrift of damaged structures might be applied to evaluate the seismic performance of damaged structures.

  • PDF

수해 예방과 항구적인 복구 방안 (A Flood Damage Preventation and Permanent Restoration Method)

  • 구본충
    • 기술사
    • /
    • 제32권6호
    • /
    • pp.94-99
    • /
    • 1999
  • Recently, flood damage is rapidly increasing because of warming of globe, urbanization and industrialization. As a countermeasure to prevent these flood damages, it is quite required to extend the flood control ability by improving the objective rivers in the watershed and building more medium to large scale reserviors. Simultaneously repairing and rehabilitation of facilities through the safety diagnosis for reinforcement of the facilities should be continuously proceeded. Also extensive implementation of drainage improvement, establishment of prevention and refairing system against flood damage and raise of accuracy of weather forecasting should be proceeded.

  • PDF

AUTOMATED DATA COLLECTION TECHNOLOGY APPLICATIONS IN CONSTRUCTION

  • Ronie Navon
    • 국제학술발표논문집
    • /
    • The 3th International Conference on Construction Engineering and Project Management
    • /
    • pp.27-29
    • /
    • 2009
  • Real-time control of on-site construction, based on high quality data, is essential to identify discrepancies between actual and planned performances. Additionally, real-time control enables timely corrective measures to be taken when needed to reduce the damages caused by the discrepancies. The focus of the presentation will be on our work, which uses automated data technologies to collect data needed for real time control.

  • PDF

태풍타입별 피해 분석 및 다중회귀분석을 활용한 태풍피해예측모델 개발 연구 (Typhoon Path and Prediction Model Development for Building Damage Ratio Using Multiple Regression Analysis)

  • 양성필;손기영;이경훈;김지명
    • 한국건축시공학회지
    • /
    • 제16권5호
    • /
    • pp.437-445
    • /
    • 2016
  • 태풍은 인류에 큰 피해를 주는 재난재해로 몇몇 선진국에서는 태풍으로 인한 건축물 피해액 사전예측 모델에 관한 연구가 진행되고 있다. 국내에서도 해외 연구를 토대로 국내에 적용시키는 연구가 진행되었지만, 태풍의 특성이나 크기 등이 차이가 나므로 국내에 적합한 모델이 필요한 실정이다. 또한, 국내의 연구는 태풍의 특성, 지역적 특성만을 고려하여 진행 하였으나, 태풍은 복합재해로서 태풍의 특성, 지리적 특성만이 아닌 태풍의 진로, 건설환경, 등 다양한 요인을 고려하여야한다. 이에 본 연구에서는 국내에 영향을 미친 태풍을 7가지 타입으로 분류하여 건물피해액 영향인자를 도출하고, 회귀분석을 실시하여 태풍 타입별 건물피해율 예측모델을 개발 목적으로 한다. 이는 선진국의 자연재해 예측모델들과 같이 국내의 상황에 맞는 태풍에 따른 피해를 예측하기 위한 모델 개발을 위한 자료로 활용 될 것이다.