• Title/Summary/Keyword: Building User

Search Result 1,039, Processing Time 0.028 seconds

Design of A new Algorithm by Using Standard Deviation Techniques in Multi Edge Computing with IoT Application

  • HASNAIN A. ALMASHHADANI;XIAOHENG DENG;OSAMAH R. AL-HWAIDI;SARMAD T. ABDUL-SAMAD;MOHAMMED M. IBRAHM;SUHAIB N. ABDUL LATIF
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.4
    • /
    • pp.1147-1161
    • /
    • 2023
  • The Internet of Things (IoT) requires a new processing model that will allow scalability in cloud computing while reducing time delay caused by data transmission within a network. Such a model can be achieved by using resources that are closer to the user, i.e., by relying on edge computing (EC). The amount of IoT data also grows with an increase in the number of IoT devices. However, building such a flexible model within a heterogeneous environment is difficult in terms of resources. Moreover, the increasing demand for IoT services necessitates shortening time delay and response time by achieving effective load balancing. IoT devices are expected to generate huge amounts of data within a short amount of time. They will be dynamically deployed, and IoT services will be provided to EC devices or cloud servers to minimize resource costs while meeting the latency and quality of service (QoS) constraints of IoT applications when IoT devices are at the endpoint. EC is an emerging solution to the data processing problem in IoT. In this study, we improve the load balancing process and distribute resources fairly to tasks, which, in turn, will improve QoS in cloud and reduce processing time, and consequently, response time.

The Degree of Age-Friendliness of Living Environments Perceived by the Aged - Focused on the Physical Environments of Busan Metropolitan - (고령자가 인지하는 생활환경의 고령친화정도 - 부산광역시 물리적 환경을 중심으로 -)

  • Kim, Soo young;Lee, Jae jung;Oh, Chan ohk
    • Design Convergence Study
    • /
    • v.15 no.2
    • /
    • pp.203-222
    • /
    • 2016
  • The age-friendly environments have the benefits that they provide not only the elderly, but also the disabled, children, pregnant, and young persons with the convenient environments. The study examined how degree the aged perceived their physical living environments were age-friendly. The data were collected from 525 old peoples living in Busan using by the person to person interview. All 34 items related to the age-friendliness of outdoor space and building, traffic, and housing were analyzed. The aged perceived that the agefriendliness of their living environments were mid-range. This implies that the improvements of their physical living environments were needed. The age-friendliness of housing area was the lowest among three areas. This means that the alternatives for improving the old persons' houses were needed. The characteristics which affected the aged' perception of the age-friendliness of physical living environments were economic level, housing type, home-ownership, and health condition.

Development of Decision Support System for Flood Forecasting and Warning in Urban Stream (도시하천의 홍수예·경보를 위한 의사결정지원시스템 개발)

  • Yi, Jaeeung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6B
    • /
    • pp.743-750
    • /
    • 2008
  • Due to unusual climate change and global warming, drought and flood happen frequently not only in Korea but also in all over the world. It leads to the serious damages and injuries in urban areas as well as rural areas. Since the concentration time is short and the flood flows increase urgently in urban stream basin, the chances of damages become large once heavy storm occurs. A decision support system for flood forecasting and warning in urban stream is developed as an alternative to alleviate the damages from heavy storm. It consists of model base management system based on ANFIS (Adaptive Neuro Fuzzy Inference System), database management system with real time data building capability and user friendly dialog generation and management system. Applying the system to the Tanceon river basin, it can forecast and warn the stream flows from the heavy storm in real time and alleviate the damages.

Study on the Failure Diagnosis of Robot Joints Using Machine Learning (기계학습을 이용한 로봇 관절부 고장진단에 대한 연구)

  • Mi Jin Kim;Kyo Mun Ku;Jae Hong Shim;Hyo Young Kim;Kihyun Kim
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.4
    • /
    • pp.113-118
    • /
    • 2023
  • Maintenance of semiconductor equipment processes is crucial for the continuous growth of the semiconductor market. The process must always be upheld in optimal condition to ensure a smooth supply of numerous parts. Additionally, it is imperative to monitor the status of the robots that play a central role in the process. Just as many senses of organs judge a person's body condition, robots also have numerous sensors that play a role, and like human joints, they can detect the condition first in the joints, which are the driving parts of the robot. Therefore, a normal state test bed and an abnormal state test bed using an aging reducer were constructed by simulating the joint, which is the driving part of the robot. Various sensors such as vibration, torque, encoder, and temperature were attached to accurately diagnose the robot's failure, and the test bed was built with an integrated system to collect and control data simultaneously in real-time. After configuring the user screen and building a database based on the collected data, the characteristic values of normal and abnormal data were analyzed, and machine learning was performed using the KNN (K-Nearest Neighbors) machine learning algorithm. This approach yielded an impressive 94% accuracy in failure diagnosis, underscoring the reliability of both the test bed and the data it produced.

  • PDF

The Critical Success Factors Influencing the Use of Mobile Learning and its Perceived Impacts in Students' Education: A Systematic Literature Review

  • Abdulaziz Alanazi;Nur Fazidah Binti Elias;Hazura Binti Mohamed;Noraidah Sahari
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.3
    • /
    • pp.610-632
    • /
    • 2024
  • Mobile Learning (M-learning) adoption and success in supporting students' learning engagement mainly depend on many factors. Therefore, this study systematically reviews the literature, synthesizes and analyzes the predictors of M-learning adoption, and uses success for students' learning engagement. Literature from 2016 to 2023 in various databases is covered in this study. Based on the review's findings, the factors that influence students' learning engagement when it comes to M-learning usage and adoption, can be divided into technical, pedagogical, and social factors. More specifically, technical factors include mobile devices availability and quality, connectivity to the internet, and user-friendly interfaces, pedagogical factors include effective instructional design, teaching methods, and assessment strategies, and social factors include motivation of students, social interaction and perceived enjoyment - all these factors have a significant impact on the M-learning adoption and use success. The findings of the review also indicated that M-learning has a key role in enhancing the learning engagement of students through different ways, like increasing their motivation, attention, and participation in their process of learning, paving the way for interaction and building relationships opportunities with peers and instructors, which in turn, can lead to strengthening the learning environment. The implications of these findings extend beyond immediate educational contexts, offering vital insights for future educational technology strategies and policy decisions, particularly in addressing global educational challenges and embracing technological advancements in learning.

A study on the application of legal design methodology for commercialization of security tokens

  • Sangyub Han;Hokyoung Ryu
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.7
    • /
    • pp.117-128
    • /
    • 2024
  • In this paper, we propose a process for deriving priority tasks using the legal design technique in a situation where there is high uncertainty in the market and legal system regarding the commercialization of security tokens based on blockchain and distributed ledger technology. To issue and distribute securities tokens, we conducted a legal design workshop with participants who applied for innovative financial services (financial regulatory sandbox). During the workshop, participants harmonized their interests and deliberated on readiness, considering both legal and technical factors. The aim was to ascertain the feasibility of identifying prioritized objectives for future endeavors. The legal design technique facilitates consensus-building among stakeholders in an uncertain environment by confirming and adjusting differing perspectives and disagreements based on mutual understanding. The key stages include the empathetic process called "Family Therapy," the "N whys" for problem definition, and the speculative scenario design for problem-solving. This approach distinguishes itself from user-centered design thinking. Given the diverse stakeholders involved, effective facilitation by the facilitator is crucial during the legal design workshop preparation and execution.

Hybrid machine learning with HHO method for estimating ultimate shear strength of both rectangular and circular RC columns

  • Quang-Viet Vu;Van-Thanh Pham;Dai-Nhan Le;Zhengyi Kong;George Papazafeiropoulos;Viet-Ngoc Pham
    • Steel and Composite Structures
    • /
    • v.52 no.2
    • /
    • pp.145-163
    • /
    • 2024
  • This paper presents six novel hybrid machine learning (ML) models that combine support vector machines (SVM), Decision Tree (DT), Random Forest (RF), Gradient Boosting (GB), extreme gradient boosting (XGB), and categorical gradient boosting (CGB) with the Harris Hawks Optimization (HHO) algorithm. These models, namely HHO-SVM, HHO-DT, HHO-RF, HHO-GB, HHO-XGB, and HHO-CGB, are designed to predict the ultimate strength of both rectangular and circular reinforced concrete (RC) columns. The prediction models are established using a comprehensive database consisting of 325 experimental data for rectangular columns and 172 experimental data for circular columns. The ML model hyperparameters are optimized through a combination of cross-validation technique and the HHO. The performance of the hybrid ML models is evaluated and compared using various metrics, ultimately identifying the HHO-CGB model as the top-performing model for predicting the ultimate shear strength of both rectangular and circular RC columns. The mean R-value and mean a20-index are relatively high, reaching 0.991 and 0.959, respectively, while the mean absolute error and root mean square error are low (10.302 kN and 27.954 kN, respectively). Another comparison is conducted with four existing formulas to further validate the efficiency of the proposed HHO-CGB model. The Shapely Additive Explanations method is applied to analyze the contribution of each variable to the output within the HHO-CGB model, providing insights into the local and global influence of variables. The analysis reveals that the depth of the column, length of the column, and axial loading exert the most significant influence on the ultimate shear strength of RC columns. A user-friendly graphical interface tool is then developed based on the HHO-CGB to facilitate practical and cost-effective usage.

Research on A Comprehensive Study on Building a Zero Knowledge Proof System Model (영지식 증명 시스템 구축 연구)

  • Sunghyuck Hong
    • Advanced Industrial SCIence
    • /
    • v.3 no.3
    • /
    • pp.8-13
    • /
    • 2024
  • Zero Knowledge Proof (ZKP) is an innovative decentralized technology designed to enhance the privacy and security of virtual currency transactions. By ensuring that only the necessary information is disclosed by the transaction provider, ZKP protects the confidentiality of all parties involved. This ensures that both the identity of the transacting parties and the transaction value remain confidential.ZKP not only provides a robust privacy function by concealing the identities and values involved in blockchain transactions but also facilitates the exchange of money between parties without the need to verify each other's identity. This anonymity feature is crucial in promoting trust and security in financial transactions, making ZKP a pivotal technology in the realm of virtual currencies. In the context of the Fourth Industrial Revolution, the application of ZKP contributes significantly to the comprehensive and stable development of financial services. It fosters a trustworthy user environment by ensuring that transaction privacy is maintained, thereby encouraging broader adoption of virtual currencies. By integrating ZKP, financial services can achieve a higher level of security and trust, essential for the continued growth and innovation within the sector.

A Study on EC Acceptance of Virtual Community Users (가상 공동체 사용자의 전자상거래 수용에 대한 연구)

  • Lee, Hyoung-Yong;Ahn, Hyun-Chul
    • Asia pacific journal of information systems
    • /
    • v.19 no.1
    • /
    • pp.147-165
    • /
    • 2009
  • Virtual community(VC) will increasingly be organized as commercial enterprises, with the objective of earning an attractive financial return by providing members with valuable resources and environment. For example, Cyworld.com in Korea uses several community services to enable customers of Cyworld to take control of their own value as potential purchasers of products and services. Although initial adoption is important for online network service success, it does not necessarily result in the desired managerial performance unless the initial usage is continuously related to the continuous usage and purchase. Particularly, the customer who receives relevant online services and is well equipped with online network services, will trust the online service provider and perceive less risk and experience more activities such as continuous usage and purchase. Thus, how to promote continued online service usage or, alternatively, how to prevent discontinuance is a critical issue for VC service providers to consider. By aggregating a wide range of information and online environments for customers and providing trust to its members, the service providers of virtual communities help to reduce the perceived risk of continuous usage and purchase. Drill down, online service managers realize that achieving strong and sustained customers who continuously use online service and purchase on it is crucial. Therefore, the research into this online service continuance will identify the relationship between the initial usage and the continuous usage and purchase. The research of continuous usage or post adoption has recently emerged as an important issue in the IS literature. Individuals' information systems(IS) continuous usage decisions are congruent with consumers' repeat purchase decisions. The TAM(Technology Acceptance Model) paradigm has been strongly confirmed across a wide range from product purchase on EC to online service usage contexts. The analysis of IS usage based on TAM has proven to be successful across almost online service contexts. However, most of previous studies have focused on only an area (i.e., VC or EC). Just little research has tried to analyze the relationship between VC and EC. The effect of some factors on user intention, captured through several theories such as TAM, has been demonstrated. Yet, few studies have explored the salient relationships of VC users' EC acceptance. To fill this gap between VC and EC research, this paper attempts to develop a research model that extends the TAM perspective in view of the additional contributions of trust in the service provider and trust in members on some factors that affect EC and VC adoption. In this extension, we applied the TAM-to-TAM(T2T) model, and analyzed the transfer effect of trust between these two TAMs. The research model was empirically tested on the context of a social network service. The model was to extend TAM with the trust concept for the virtual community environment from the perspective of tasks. By building an extended model of TAM and examining the relationships between trust and the existing variables of TAM, it is aimed to explain a user's continuous intention to use VC and purchase on EC. The unit of analysis in this paper is an individual user of a virtual community. The population of interest is the individual with the experiences in virtual community. The data for this paper was made available via a Web survey of VC users. In total, 281 cases were gathered for about one week, but there were some missing values in the sample and there were some inappropriate cases. Thus, only 248 cases were finally analyzed. We chose the structural equation analysis to test the hypotheses and it is better suited for explaining complex relationships than the other methods. In this test, AMOS was used to test the Structural Equation Model (SEM). Noticeable results have been found in the T2T model regarding the factors affecting the intention to use of virtual community and loyalty. Our result showed that trust transfer plays a key role in forming the two adoption beliefs. Overall, this study preliminarily confirms the salience of trust transfer in online service.

A Study on the Impact Factors of Contents Diffusion in Youtube using Integrated Content Network Analysis (일반영향요인과 댓글기반 콘텐츠 네트워크 분석을 통합한 유튜브(Youtube)상의 콘텐츠 확산 영향요인 연구)

  • Park, Byung Eun;Lim, Gyoo Gun
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.3
    • /
    • pp.19-36
    • /
    • 2015
  • Social media is an emerging issue in content services and in current business environment. YouTube is the most representative social media service in the world. YouTube is different from other conventional content services in its open user participation and contents creation methods. To promote a content in YouTube, it is important to understand the diffusion phenomena of contents and the network structural characteristics. Most previous studies analyzed impact factors of contents diffusion from the view point of general behavioral factors. Currently some researchers use network structure factors. However, these two approaches have been used separately. However this study tries to analyze the general impact factors on the view count and content based network structures all together. In addition, when building a content based network, this study forms the network structure by analyzing user comments on 22,370 contents of YouTube not based on the individual user based network. From this study, we re-proved statistically the causal relations between view count and not only general factors but also network factors. Moreover by analyzing this integrated research model, we found that these factors affect the view count of YouTube according to the following order; Uploader Followers, Video Age, Betweenness Centrality, Comments, Closeness Centrality, Clustering Coefficient and Rating. However Degree Centrality and Eigenvector Centrality affect the view count negatively. From this research some strategic points for the utilizing of contents diffusion are as followings. First, it is needed to manage general factors such as the number of uploader followers or subscribers, the video age, the number of comments, average rating points, and etc. The impact of average rating points is not so much important as we thought before. However, it is needed to increase the number of uploader followers strategically and sustain the contents in the service as long as possible. Second, we need to pay attention to the impacts of betweenness centrality and closeness centrality among other network factors. Users seems to search the related subject or similar contents after watching a content. It is needed to shorten the distance between other popular contents in the service. Namely, this study showed that it is beneficial for increasing view counts by decreasing the number of search attempts and increasing similarity with many other contents. This is consistent with the result of the clustering coefficient impact analysis. Third, it is important to notice the negative impact of degree centrality and eigenvector centrality on the view count. If the number of connections with other contents is too much increased it means there are many similar contents and eventually it might distribute the view counts. Moreover, too high eigenvector centrality means that there are connections with popular contents around the content, and it might lose the view count because of the impact of the popular contents. It would be better to avoid connections with too powerful popular contents. From this study we analyzed the phenomenon and verified diffusion factors of Youtube contents by using an integrated model consisting of general factors and network structure factors. From the viewpoints of social contribution, this study might provide useful information to music or movie industry or other contents vendors for their effective contents services. This research provides basic schemes that can be applied strategically in online contents marketing. One of the limitations of this study is that this study formed a contents based network for the network structure analysis. It might be an indirect method to see the content network structure. We can use more various methods to establish direct content network. Further researches include more detailed researches like an analysis according to the types of contents or domains or characteristics of the contents or users, and etc.