• Title/Summary/Keyword: Building Structure Standards

Search Result 146, Processing Time 0.024 seconds

The Strengthening Effect of the Heating and Cooling Load on the Thermal Performance in the Housing Unit (주택에서의 단열성능 강화가 냉난방부하에 미치는 영향)

  • Lee, Jun-Gi;Kim, Sung-Hoon;Lee, Gab-Taek;Lee, Kyung-Hee
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.12
    • /
    • pp.483-488
    • /
    • 2016
  • In this study, we chose the rural house as a standard model. In order to review the energy difference of cooling and heating loads, we changed the thermal transmittance standards. By using the thermal transmittance standard in 2011 as the Basic CASE, the thermal transmittance standard in 2013 as well as 2016, and the thermal transmittance standard of passive houses, we compared the results with regard to the cooling and heating energy load. Because of the heat loss, it can be confirmed that with an improved thermal performance of the building structure, the maximum increase of the cooling energy load was 36 kWh from June to September. Because of the heat loss, it was also confirmed that with the improved thermal performance of a building structure, the maximum decrease of the heating energy load is 1,498 kWh from November to April. Even though the heat loss of the building structure could decrease the cooling energy load by improving thermal transmittance standards in Korea, the energy saving performance is worse than the situation of heating energy load in heating period. Compared with CASE 1 and CASE 2, as well as CASE 1 and CASE 3, we CASE 3 was found to have the best energy saving rate when compared to the other cases : CASE 3 increased by 1,452 kWh and CASE 2 by 588 kWh, because the window thermal transmittance standard of 2016 was added.

Seismic Reinforcement of Rural Low-rise Building using Carbon Fiver Plate (탄소판가새를 이용한 농촌 저층건물의 내진보강)

  • Jung, Dong-Jo;Choi, Sung-Dae
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.16 no.2
    • /
    • pp.1-8
    • /
    • 2014
  • In the past, Korea was classified as a region not affected by earthquakes. However, recent increase of earthquakes has forced to strengthen standards of earthquake resistant designs of structures to minimize seismic damage. In addition, it was thought that masonry infill walls in buildings are only acting as partitions, so these walls are not considered in analyzing building structures. But it was found that when seismic loads are applied to a structure with masonry infill walls, the walls affect the structure. Accordingly, this study conducted nonlinear static analyses for a structure constructed before applying earthquake resistant designs in two cases: when considering masonry walls and when not. The result showed that the seismic performance of the structure is insufficient. Thus, the structural resistance of the structure was also studied in two cases: when reinforcing with steel plate braces and when using carbon fiber braces. In the two cases reinforcing two different stiffeners, it was appeared that the behaviors of the structure were similar, though the cross-section area of a carbon fiber brace used to reinforcing the structure is only 12.6% of a steel plate brace, and its weight is only 2.8%. Thus, the reinforcing effect of the thin, light-weighted carbon fiber brace is much larger than that of the steel plate brace, when considering usability and constructability of both materials.

Comparative assessment of ASCE 7-16 and KBC 2016 for determination of design wind loads for tall buildings

  • Alinejad, Hamidreza;Jeong, Seung Yong;Kang, Thomas H.K.
    • Wind and Structures
    • /
    • v.31 no.6
    • /
    • pp.575-591
    • /
    • 2020
  • Wind load is typically considered as one of the governing design loads acting on a structure. Understanding its nature is essential in evaluation of its action on the structure. Many codes and standards are founded on state of the art knowledge and include step by step procedures to calculate wind loads for various types of structures. One of the most accepted means for calculating wind load is using Gust Load Factor or base bending Moment Gust Load Factor (MGLF), where codes are adjusted based on local data available. Although local data may differ, the general procedure is the same. In this paper, ASCE 7-16 (2017), which is used as the main reference in the U.S., and Korean Building Code (KBC 2016) are compared in evaluation of wind loads. The primary purpose of this paper is to provide insight on each code from a structural engineering perspective. Herein, discussion focuses on where the two codes are compatible and differ. In evaluating the action of wind loads on a building, knowledge of the dynamic properties of the structure is critical. For this study, the design of four figurative high-rise buildings with dual systems was analyzed.

A Study on the Improvement of Performance Standard and Classification for the Firestop Accreditation System (내화충전구조 인정제도의 성능기준 및 등급분류 개선에 관한 연구)

  • Lee, H.D.;Choi, Y.J.;An, J.H.;Jeong, A.Y.;Seo, H.W.;Park, Jin O
    • Journal of the Korean Society of Safety
    • /
    • v.35 no.4
    • /
    • pp.32-39
    • /
    • 2020
  • The fire compartments with fire-resistant construction are installed in the principal structural parts of a building in order to reduce damage in the event of a building fire. As a fire may spread through a crack in the fire compartment, the firestop with secured performance is used according to the procedure, methods, and standards specified in the detailed operation guideline. According to the current detailed operation guideline, vertical members (wall penetration) and horizontal members (floor penetration) are classified into different categories respective to each other for the classification of the firestop. Therefore, an accreditation applicant must apply for the performance test for each structure even if the wall and the floor have the same structure. Also, Grade T is used for the firestop that penetrates the fire compartment. However, in the case of foreign countries, the use of Grade F for the firestop is allowed even if it penetrates the fire compartment. The result of the precedent studies also showed that there was a significantly low possibility of fire to spread even if Grade F was applied for a metallic duct that penetrated the fire compartment. In this study, the improved scheme for the classification and performance standard of firestops was presented by analyzing the results of precedent studies regarding the firestop and domestic and overseas firestop qualification systems.

MANAGEMENT OF DIGITAL DESIGN DATA IN BUILDING DESIGN AND CONSTRUCTION UNITS

  • Linas Gabrielaitis ;Romualdas Bausys
    • International conference on construction engineering and project management
    • /
    • 2005.10a
    • /
    • pp.725-730
    • /
    • 2005
  • The problem of managing digital design data including drawings, specifications and other technical data in building design and construction units is a real challenge, especially when there is a need to structure the design information across building design companies. The main difficulty in this information management is the shortage of unified rules (or standards) on how the digital design data should be gathered, archived, and preserved in the most efficient way for building design and construction units. The most important issue, which addressed in this work, is the standardized reference of all design data definitions.

  • PDF

Study on the Strength Development of Fly ash Replace Concrete by a In-situ Temperature System (온도추종 양생 장치에 의한 플라이애쉬 치환 콘크리트의 강도 발현 성상)

  • Lee, Gun-Cheol;Yoon, seung-joe;Lee, Gun-Young;Choi, Jung-Gu;Kim, Kyoung-Min
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.05a
    • /
    • pp.126-127
    • /
    • 2014
  • At construction sites, due to the reason of inconvenience and difficulties of producing and using curing equipment and when it comes to measuring compression strength of the actual structure, strength of structure concrete according to general standards which are suggested in concrete standard specification are assessed. However, this method does not consider various variables of the sites such as kinds concretes and sizes of frame works so that it is not easy to measure proper curing period and strength. Thus, this study reviews description of strength development according to In-situ temperature system and analyzes and compares properties of strength development of the existing curing methods such as sealing curing so that it provides basic materials for period of removal of molds.

  • PDF

Applicability on Water Treatment Structure of Anti-corrosive Sheet Molding Compound Panel (고분자수지계 패널형 방수방식재의 수처리구조물 적용성에 관한 실험적연구)

  • Seo, Hyun Jae;Park, Jin Sang;Bae, Kee Sun;Oh, Sang Keun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.11a
    • /
    • pp.161-163
    • /
    • 2011
  • Due to various kind of waterproof materials and methods, which is difficult to select the most appropriate to waterworks. The materials used to prevent the deterioration of the service life is short, because of the chemical erosion. So, in the 2010 Office of Waterworks Seoul Metropolitan Government has set new standards. Recently, SMC panel is a trend that is being applied to water treatment facilities. However, SMC panel has not yet implemented a performance evaluation. Therefore, this study to confirm that satisfaction for the Office of Waterworks Seoul Metropolitan Government of the performance requirements, when the applied the SMC panel to water treatment structure.

  • PDF

Complex Environmental Degradation Resistance Performance Evaluation Method of Membrane Waterproofing Systems for Underground Concrete Structure Joint (지하 콘크리트 구조물 조인트에 대한 멤브레인 방수시스템의 복합 환경 대응 성능 평가 방법)

  • Oh, Kyu-Hwan;Kim, Byoung-Il;Oh, Sang-Keun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.05a
    • /
    • pp.44-45
    • /
    • 2017
  • There are various national standards designed to test the physical properties of waterproofing materials for the respective countries based on each of their environmental parameters, variables and requirements. The problems of these standard systems can be outlined in the following: (1) there are too many test methods and criteria to satisfy in order assess one waterproofing membrane system, and (2) there is currently no known method to compile the separate testing results to provide a comprehensive report on waterproofing system durability. This paper outlines and compares the performance testing results of various types of asphalt waterproofing membrane systems and discusses the potentials of a complex environmental deterioration analysis method.

  • PDF

A Study on the Changing Factors in Cost Estimate Standard for Reinforced Concrete Structure Maintenance (철근콘크리트 구조물 유지보수 공사비산정기준 개정요인에 관한 연구)

  • Song, Tae-Seok;An, Bang-Yul
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.315-316
    • /
    • 2021
  • The proportion of maintenance work has been increasing due to the recent aging of the infrastructure, but the standardized construction cost estimation standards are insufficient for this. In particular, reinforced concrete structures are being applied to many structures such as buildings and bridges, and various construction methods for maintenance of reinforced concrete structures are being developed and applied. In this study, we surveyed about the current status of the construction method for the maintenance work of reinforced concrete structures and analyze the factors of the revision of the construction cost estimate standard for the reinforced concrete structure maintenance.

  • PDF

Analyzing the Functional Spaces of Military Dining Facilities Using Analytic Hierarchy Process (AHP를 이용한 군 취사식당 기능공간 분석)

  • Lee, Seung-Hoo;Lee, Hyun-Soo;Park, Moonseo;Ji, Sae-Hyun
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.36 no.5
    • /
    • pp.155-164
    • /
    • 2020
  • This research used Analytic Hierarchy Process(AHP) to analyze the importance and priority of functional space and evaluation factors of each functional space of the military dining facility. Dining in the military is an important factor in restoring combat power and promoting morale. The military dining facility serves as a not only for meals, but also for watching TV, education and club activities. Workers working in dining facility spend most of their work hours in dining facility, perform tasks such as cooking, dishwashing, and leftover disposal, and take breaks. As such, the military dining facility is a space where various functions are performed, and space planning should take into account these various functions when planning the building of the dining facility. However, the criteria for defense and military facilities, which are the basis for planning the space of military dining facility, are calculated only by simply analyzing the standard floor plan to match the size of the person-to. Therefore, when there is space to be reduced in the total area, there are side effects such as leaving visible table space without consideration for priority or functional space, unseen office space, and adjusting the entire area through reduction of the lounge. Accordingly, based on the priority of the space that the staff of the military dining facility considers important, this research aims to analyze the characteristics of each functional space through classification according to its unique function. This can be an indicator that can be used as a basis for future revision of the building floor area standards of the defense and military facilities standards, and it can improve usability with an efficient space plan that takes into account the characteristics of the Korean military and the satisfaction of its workers. Furthermore, efficient use of the defense budget through rational building plans can contribute to budget reduction.