• Title/Summary/Keyword: Building Morphology

Search Result 100, Processing Time 0.025 seconds

A "Dynamic Form-Finding" Approach to Environmental-Performance Building Design

  • Yao, Jia-Wei;Lin, Yu-Qiong;Zheng, Jing-Yun;Yuan, Philip F.
    • International Journal of High-Rise Buildings
    • /
    • v.7 no.2
    • /
    • pp.145-151
    • /
    • 2018
  • Newly-designed high-rise buildings, both in China and abroad, have demonstrated new innovations from the creative concept to the creative method. from the creative concept to the creative method. At the same time, digital technology has enabled more design freedom in the vertical dimension. "Twisting" has gradually become the morphological choice of many city landmark buildings in recent years. The form seems more likely to be driven by the interaction of aesthetics and structural engineering. Environmental performance is often a secondary consideration; it is typically not simulated until the evaluation phase. Based on the research results of "DigitalFUTURE Shanghai 2017 Workshop - Wind Tunnel Visualization", an approach that can be employed by architects to design environmental-performance buildings during the early stages has been explored. The integration of a dynamic form-finding approach (DFFA) and programming transforms the complex relationship between architecture and environment into a dialogue of computer language and dynamic models. It allows the design to focus on the relationship between morphology and the surrounding environment, and is not limited to the envelope form itself. This new concept of DFFA in this research consists of three elements: 1) architectural form; 2) integration of wind tunnel and dynamic models; and 3) environmental response. The concept of wind tunnel testing integrated with a dynamic model fundamentally abandons the functional definition of the traditional static environment simulation analysis. Instead it is driven by integral environmental performance as the basic starting point of morphological generation.

Determinants and Processes of Morphological Transformation of Apartment Complexes in Busan (부산 아파트 단지 배치형태 변화의 요인과 과정에 관한 연구)

  • Lee, Sangjin;Park, SoHyu
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.35 no.3
    • /
    • pp.91-102
    • /
    • 2019
  • This study explores the causes and processes of morphological transformation of apartment complexes in Busan. All apartment complexes built until the year 2016 were selected for statistical analysis, drawing/map examination, field observation, selected expert interviews based on 6 periodical groups: Period I(~1990), Period II(1991~1995), Period III(1996~2000), Period IV(2001~2005), Period V(2006~2010), and Period VI(2011~2016). The research argues for three 'arrangement' types, P1U, L1U and P2U, which have dominated the whole periods occupying 88% of the total 260 complexes. The switch of the leading type represents for morphological transformation of apartment complexes. Four aspects, density(F.A.R.), height(maximum number of floors), deformed-building-type ratio, and building-orientation, have affected the change of 'arrangement' types. Density was the major cause of the arrangement-type switch, from P1U to L1U, on Period II(1991~1995). The morphological change, from type L1U to P2U, on Period V(2006~2010) was caused by height and orientation, and is correlated with the increased number of deformed-type buildings. The first phase morphological change on Period II(1991~1995) was resulted by the supply side of apartment. However, the second phase transformation on Period V(2006~2010) had gone through the complex process including reflection of consumers' demands. The significance of research is to reveal the morphological transformation process of apartment complexes through analytical investigation of the entire apartment data in Busan. The result shows that the major change of urban paysage started to occur from Period V(2006~2010), and the superficial evaluation on apartment 'being monotonous and repetitive' may not be proper at least from the perspective of town plan.

Comprehensive Comparisons among LIDAR Fitering Algorithms for the Classification of Ground and Non-ground Points (지면.비지면점 분류를 위한 라이다 필터링 알고리즘의 종합적인 비교)

  • Kim, Eui-Myoung;Cho, Du-Young
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.1
    • /
    • pp.39-48
    • /
    • 2012
  • Filtering process that separates ground and non-ground points from LIDAR data is important in order to create the digital elevation model (DEM) or extract objects on the ground. The purpose of this research is to select the most effective filtering algorithm through qualitative and quantitative analysis for the existing filtering method used to extract ground points from LIDAR data. For this, four filtering methods including Adaptive TIN(ATIN), Perspective Center-based filtering method(PC), Elevation Threshold with Expand Window(ETEW) and Progressive Morphology(PM) were applied to mountain area, urban area and the area where building and mountains exist together. Then the characteristics for each method were analyzed. For the qualitative comparison of four filtering methods used for the research, visual method was applied after creating shaded relief image. For the quantitative comparison, an absolute comparison was conducted by using control points observed by GPS and a relative comparison was conducted by the digital elevation model of the National Geographic Information Institute. Through the filtering experiment of the LIDAR data, the Adaptive TIN algorithm extracted the ground points in mountain area and urban area most effectively. In the area where buildings and mountains coexist, progressive morphology algorithm generated the best result. In addition, as a result of qualitative and quantitative comparisons, the applicable filtering algorithm regardless of topographic characteristics appeared to be ATIN algorithm.

Synthesis of Ultra-long Hollow Chalcogenide Nanofibers

  • Jwa, Yong-Ho
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.3.1-3.1
    • /
    • 2011
  • Nanoengineered materials with advanced architectures are critical building blocks to modulate conventional material properties or amplify interface behavior for enhanced device performance. While several techniques exist for creating one dimensional heterostructures, electrospinning has emerged as a versatile, scalable, and cost-effective method to synthesize ultra-long nanofibers with controlled diameter (a few nanometres to several micrometres) and composition. In addition, different morphologies (e.g., nano-webs, beaded or smooth cylindrical fibers, and nanoribbons) and structures (e.g., core-.shell, hollow, branched, helical and porous structures) can be readily obtained by controlling different processing parameters. Although various nanofibers including polymers, carbon, ceramics and metals have been synthesized using direct electrospinning or through post-spinning processes, limited works were reported on the compound semiconducting nanofibers because of incompatibility of precursors. In this work, we combined electrospinning and galvanic displacement reaction to demonstrate cost-effective high throughput fabrication of ultra-long hollow semiconducting chalcogen and chalcogenide nanofibers. This procedure exploits electrospinning to fabricate ultra-long sacrificial nanofibers with controlled dimensions, morphology, and crystal structures, providing a large material database to tune electrode potentials, thereby imparting control over the composition and shape of the nanostructures that evolved during galvanic displacement reaction.

  • PDF

A Study on the Evaluation of Indoor Air Environment in Super High-Rise Dwelling House (都市 超高層 住居建築의 室內空氣環境의 評價에 관한 硏究)

  • Park, Mi-Jin
    • Journal of the Korean Society of Safety
    • /
    • v.17 no.4
    • /
    • pp.119-125
    • /
    • 2002
  • The concept of dwelling space is tend to be changed not only to have reasonable mobility but also to have high quality of indoor air with psychologicaa satisfaction and comfortable. Moreover, recent constructed buildings have a big problem because of exhausted pollution gas and particles from building materials. More serious problem occurs from its high air tightness reducing the ventilation for saving the energy and superior adiabatic insulators to have high heat efficiency. Indoor air quality in super high-rise dwelling house was investigated by measuring pollutants such as $CO_2,=;CO,\;MO_2,\;R_n,\;TSP,\;PM_{10}$, HCHO, Offensive ordor. Subjective evaluation of residential environment is processed for the inhabitants who live in research space by testing environmental load in accordance with environment morphology, exterior environmental factor and post occupancy correlation and influence of attention.

Evolution of Skyscraper Block Typology Affected by Air Rights Development: A Case Study of Manhattan

  • Chao Weng;Yu Zhuang
    • International Journal of High-Rise Buildings
    • /
    • v.12 no.1
    • /
    • pp.19-33
    • /
    • 2023
  • Air Rights techniques, including floor-area ratio (FAR) transfers, FAR bonuses, and FAR storage, have been widely applied among skyscraper constructions in New York City for profit maximization goals. Since 1916, air rights regulations in New York zoning system have been revised and improved over the years to cater the urban development needs of different periods, and they also result in typical skyscraper block typologies. This research firstly performed spatial overlay analysis to reveal the spatial correlation between skyscraper blocks and air rights application blocks; secondly, Spacematrix parameters and cluster analysis are applied to divide the skyscraper urban block of New York City into four categories. Compared with air rights application data, the research attempts to illustrate how various air rights techniques have acted on the formation and evolution of skyscraper block typologies in the pre-1916, 1916-1961, 1961-2010, and 2010-present periods respectively, in order to reveal the relationship between public policies and urban morphology in a broader sense and also provide references for policy making in future.

Analysis of Urban Heat Island Effect Using Information from 3-Dimensional City Model (3DCM) (3차원 도시공간정보를 이용한 도시열섬현상의 분석)

  • Chun, Bun-Seok;Kim, Hag-Yeol
    • Spatial Information Research
    • /
    • v.18 no.4
    • /
    • pp.1-11
    • /
    • 2010
  • Unlike the previous studies which have focused on 2-dimensional urban characteristics, this paper presents statistical models explaining urban heat island(UHI) effect by 3-dimensional urban morphologic information and addresses its policy implications. 3~dimensional informations of Columbus, Ohio arc captured from LiDAR data and building boundary informations are extracted from a building digital map, Finally NDV[ and temperature data are calculated by manipulating band 3, band 4, and thermal hand of LandSat images. Through complicated data processing, 6 independent variables(building surface area, building volume, height to width ratio, porosity, plan surface area) are introduced in simple and multiple linear regression models. The regression models are specified by Box-Tidwell method, finding the power to which the independent variable needs to raised to be in a linearity. Porosity, NDVI, and building surface area are carefully chosen as explanatory variables in the final multiple regression model, which explaining about 57% of the variability in temperatures. On reducing UHI, various implications of the results give guidelines to policy-making in open space, roof garden, and vertical garden management.

Morphological Hand-Gesture Recognition Algorithm (형태론적 손짓 인식 알고리즘)

  • Choi Jong-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.8
    • /
    • pp.1725-1731
    • /
    • 2004
  • The use of gestures provides an attractive alternate to cumbersome interface devices for human-computer interaction. This has motivated a very active research area concerned with computer vision-based analysis and interpretation of hand gestures. The most important issues in gesture recognition are the simplification of algorithm and the reduction of processing time. The mathematical morphology based on geometrical set theory is best used to perform the processing. A key idea of proposed algorithm in this paper is to apply morphological shape decomposition. The primitive elements extracted to a hand gesture include in very important information on the directivity of the hand gestures. Based on this characteristic, we proposed the morphological gesture recognition algorithm using feature vectors calculated to lines connecting the center points of a main-primitive element and sub-primitive elements. Through the experiment, we demonstrated the efficiency of proposed algorithm. Coupling natural interactions such as hand gesture with an appropriately designed interface is a valuable and powerful component in the building of TV switch navigating and video contents browsing system.

Synthesis, morphology and electrochemical applications of iron oxide based nanocomposites

  • Letti, Camila J.;Costa, Karla A.G.;Gross, Marcos A.;Paterno, Leonardo G.;Pereira-da-Silva, Marcelo A.;Morais, Paulo C.;Soler, Maria A.G.
    • Advances in nano research
    • /
    • v.5 no.3
    • /
    • pp.215-230
    • /
    • 2017
  • The development of hybrid systems comprising nanoparticles and polymers is an opening pathway for engineering nanocomposites exhibiting outstanding mechanical, optical, electrical, and magnetic properties. Among inorganic counterpart, iron oxide nanoparticles (IONP) exhibit high magnetization, controllable surface chemistry, spintronic properties, and biological compatibility. These characteristics enable them as a platform for biomedical applications and building blocks for bottom-up approaches, such as the layer-by-layer (LbL). In this regard, the present study is addressed to investigate IONP synthesised through co-precipitation route (average diameter around 7 nm), with either positive or negative surface charges, LbL assembled with sodium sulfonated polystyrene (PSS) or polyaniline (PANI). The surface and internal morphologies, and electrochemical properties of these nanocomposites were probed with atomic force microscopy, UV-vis and Raman spectroscopy, scanning electron microscopy, cross-sectional transmission electron microscopy, and electrochemical measurements. The nanocomposites display a globular morphology with IONP densely packed while surface dressed by polyelectrolytes. The investigation of the effect of thermal annealing (300 up to $600^{\circ}C$) on the oxidation process of IONP assembled with PSS was performed using Raman spectroscopy. Our findings showed that PSS protects IONP from oxidation/phase transformation to hematite up to $400^{\circ}C$. The electrochemical performance of nanocomposite comprising IONP and PANI were investigated in $0.5mol{\times}L^{-1}$ $Na_2SO_4$ electrolyte solution by cyclic voltammetry and chronopotentiometry. Our findings indicate this structure as promising candidate for potential application as electrodes for supercapacitors.

Investigation and Analysis on the Surface Morphology of Roof-Top Photovoltaic System (평지붕 설치 태양광시스템의 표면형태 조사·분석)

  • Lee, Eung-Jik
    • Journal of the Korean Solar Energy Society
    • /
    • v.36 no.4
    • /
    • pp.57-65
    • /
    • 2016
  • Domestic photovoltaic system for roof-top is installed towards the south at an angle of 20 to 35 degrees and the shape of PV array is divided into two kinds; a plane shape and a curved shape. This paper aims to understand an actual condition of PV facility and strengths and weaknesses of support structure production and installation and to consider the best PV surface shape by analyzing theoretical logics of these two surface shapes and architectural perspective-based realistic case studies. This study targeted 98 facilities including common houses, public institutions and education institutions. In common houses, all of 59 PV facilities have a plane surface. In public institutions, 7 of 15 PV facilities have a curved array surface and 8 PV facilities have a plane surface. In education institutions, also, 14 of 24 PV facilities have a plane array surface and 10 PV facilities have a curved surface. Most of 98 facilities have a flat roof supporting shape. However, it was found that the curved shape wasn't positive for PV generation due to the change of radial density and it was at least 10 % more expensive to produce its structure. Also, domestic general large single-plate PV facilities have problems of harmony with buildings and wind load. Therefore, it is considered that for fixed-type roof-top PV, a plane PV array shape is good for optimum generation and economic efficiency and a parallel array structure on the roof surface is favorable to wind load and snow load without being a hindrance to the building facade.