• Title/Summary/Keyword: Building Integrated PV

Search Result 116, Processing Time 0.025 seconds

The Thermal Performance Comparison of BIPVT Collector Applied on Roofs and Facades (건물 적용 유형별 BIPVT 집열기 열적 실험성능 비교)

  • Gang, Jun-Gu;Kim, Jin-Hui;Kim, Jun-Tae
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2009.11a
    • /
    • pp.269-272
    • /
    • 2009
  • The temperature of PV modules that integrated into building facades or roof increases that could reduce the electrical efficiency of the PV system. In order to incresae PV system's efficiency it is very important to remove the heat from the PV modules. For this purpose, hot air can be extracted from the space between PV modules and building envelope, and used for heating in buildings. The solar collector utilizing this thermal effect is called photovoltaic-thermal(PVT) solar collector. This paper compares the experimental performance of building-integrated PVT collectors that applied on building roof and facade. There are two different case: a roof-integrated PVT type and a facade-integrated PVT type. The experimental results show that the collected thermal energy of the roof-integrated type was 24% higher, compared to that of the facade-integrated.

  • PDF

Experimental Analysis of Ventilation Effect on the Performance of Building-Integrated PV Solar Roof (건물통합형 PV Solar Roof의 통풍효과 실험분석)

  • Kim, Jin-Hee;Lee, Kang-rock;Kim, Jun-Tae
    • Journal of the Korean Solar Energy Society
    • /
    • v.26 no.1
    • /
    • pp.73-79
    • /
    • 2006
  • The integration of PV modules into building facades or roof could raise PV module temperature that results in the reduction of electrical power generation. Lowering operating temperature of PV module is important in this respect, and PV module temperature should be considered more accurately, for building-integrated PV(BIPV) systems in predicting their performance. This paper describes a BIPV solar roof design and verifies its performance through experiment In relation to the effect of ventilation in space between PV module and roof surface. The results showed that the ventilation in the space had a positive effect in lowering the module temperature of the BIPV solar roof that enhanced the performance of its electricity generation.

An analysis of Classification and Characteristics of PV Modules Applied into Building Roof (PV모듈의 지붕 적용 유형 분류 및 특성 분석)

  • Moon, Jong-Hyeok;Kim, Jin-Hee;Kim, Yong-Jae;Kim, Jun-Tae
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.251-258
    • /
    • 2009
  • Building-Integrated Photovoltaics (BIPV) is a photovoltaic (PV) technology which can be incorporated into the roofs walls of both commercial and domestic buildings to provide a source of electricity. BIPV systems can operate as a multi-functional building components, which generates electricity and serves as part of building envelope. It can be regarded as a new architectural elements, adding to the building's aesthetics. Applying PV modules on roof has an advantage over wall applications as they seem to receive more solar radiation on PV modules. There are various types of PV applications on building roofs: attached, on-top and integrated. This paper describes the classification and characteristics of PV applications on roofs.

  • PDF

Movable BIPV Shading Device Design for Apartment Building Balcony (발코니 설치식 가동형 차양겸용 BIPV 디자인과 성능연구)

  • Chin, Kyung-Il;Yoon, Jong-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.5
    • /
    • pp.85-92
    • /
    • 2010
  • At the beginning the 21st century, we are interested in renewable energy especially photovoltaic. So, we have been installed PV at the building roofs so that we call it building integrated photovoltaic. But strictly speaking, installing the PV on the roof is not building integrated. There are few BIPV designs especially for balcony. In the apartment building, roof is good installing place for PV, but its area was limited. Now a day, built apartment building's heights are more and more increased so that the performance of installed PV on the roof cannot be enough to use even the public use. Thereby, we need the new space in the building to install the PV except the building roof. This study suggests the building facade balcony as a new space to install the PV with building integrated PV design. Hence, in this study, we are designed the movable BIPV shading device for apartment building balcony, and verified its performance with computer simulation. Developed device in this study can works as an electronic generation device and an overhang on the side balcony. As a result, the electronic generation performance of device contributes 15~30% to each apartment unit. The more unit width increase, the better contributed device generates.

A Study on the Performance Comparisons of Air Type BIPVT Collector Applied on Roofs and Facades (건물 적용 유형별 공기식 BIPVT 유닛의 전기 및 열성능 비교에 관한 연구)

  • Kang, Jun-Gu;Kim, Jin-Hee;Kim, Jun-Tae
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.5
    • /
    • pp.56-62
    • /
    • 2010
  • The integration of PV modules into building facades or roof could raise their temperature that results in the reduction of PV system's electrical power generation. Hot air can be extracted from the space between PV modules and building envelope, and used for heating in buildings. PV/thermal collectors, or more generally known as PVT collectors, are devices that operate simultaneously to convert solar energy from the sun into two other useful energies, namely, electricity and heat. This paper compares the experimental performance of BIPVT((Building-Integrated Photovoltaic Thermal) collectors that applied on building roof and facade. There are four different cases: a roof-integrated PVT type and a facade-integrated PVT type, the base models with an air gap between the PV module and the surface, and the improved models for each types with aluminum fins attached to the PV modules. The accumulated thermal energy of the roof-integrated type was 15.8% higher than the facade-integrated regardless of fin attachment. The accumulated electrical energy of the roof-integrated type was 7.6% higher, compared to that of the facade-integrated. The efficiency differences among the collectors may be due to the fact that the pins absorbed heat from the PV module and emitted it to air layer.

A simulation analysis of PV application method effect on electric power performance in an apartment wall facade (아파트 입면형 PV적용방식의 발전성능효과해석 연구)

  • Seo, Jung-Hun;Huh, Jung-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.26 no.3
    • /
    • pp.25-32
    • /
    • 2006
  • The objective of this study is to investigate the effect of building integrated PV application method on power generation. PV modules were integrated to a hypothetical apartment building facade in Seoul, Korea. Three different design options of PV panel mounted on exterior wall were developed for the analysis of cooling effects through ventilation. Numerical simulations using TRNSYS coupled with COMIS were executed to evaluate the design options. Their facade configurations are such as vertically installed PV panels with or without air gap between PV rear surface and exterior wall surface, and the tilted PV panels attached to the exterior wall at an angle of to the horizontal. Parametric results show that there is little difference regardless of the air 9ap width between PV rear surface and exterior wall surface. Special strategies which could effectively cool a PV panel to increase the electric power are required if we prefer to a vertical facade configuration in a building integrated PV installation. Consequently, it is expected that there is no reason for architect to install vertically PV panels with air gap unless active strategies are considered.

A Study on the Development of Roof Integrated PV Module (Focused on the Prefab Building System) (지붕재 일체형 태양전지 모듈의 개발에 따른 내구성 평가 (조립식 건축시스템을 중심으로))

  • Yi, So-Mi;Noh, Ji-Hee;Lee, Eung-Jik
    • KIEAE Journal
    • /
    • v.6 no.4
    • /
    • pp.17-24
    • /
    • 2006
  • The application of photovoltaics into building as integrated building components has been paid more attention worldwide. Photovoltaics or solar electric modules are solid state devices, directly converting solar radiation into electricity; the process does not require fuel and any moving parts, and produce no pollutants. And the prefab building method is very effective because the pre- manufactured building components is simply assembled to making up buildings in the construction fields especially the sandwich panel. Architecture considerations for the integration of PV module to building envelope such as building structure, construction type, safety, regulation, maintenance etc. have been carefully refelected from the early stage of BIPV module design. Trial product of BIPV module are manufactured and sample construction details for demonstration building are purposed. Therefore, this paper intends to advanced its practical use by proposing how to get integrated PV system which can be applied to prefab building material, and how to apply it.

Development of Building Integrated PV(BIPV) module for the replacement of commercial building envelope materials (건물외피용 태양광발전 BIPV 모듈 개발 연구)

  • Yoon, Jongho;Kim, J.I;Lee, K.S.;Yu, G.J.
    • KIEAE Journal
    • /
    • v.4 no.3
    • /
    • pp.113-119
    • /
    • 2004
  • As Building Integrated Photovoltaic(BIPV) system replaces the conventional building finishing materials with PV modules, two function of electricity generation and building envelope can be expected. Therefore BIPV can be a good alternative technology for the 21 century environment-friendly buildings. The objective of this paper is to develope BIPV modules for a commercial buildings of which structure is mainly light-weight, curtain wall system. Two types of module are developed for a opaque part and a transparent part of building envelope. Current technology level and market status of Korea determines the configuration of developed BIPV modules. Architectural considerations for the integration of PV module to building envelope such as building structure, construction type, safety, regulation, maintenance etc. have been carefully reflected from the early stage of BIPV module design. Especially the survey result of current building envelope materials determines the size of unit BIPV modules and a unique cladding method for PV module installation is developed. Trial product of BIPV modules and cladding hardwares are manufactured and sample construction details for a demonstration building are proposed.

Experimental Study on the Combined Effect of Power and Heat according to the Ventilation of Back Side in Roof Integrated PV System (주택 지붕일체형 PV시스템 후면환기에 따른 발전성능 변화 실험연구)

  • Yoon, Jong-Ho;Han, Kyu-Bok;An, Young-Sub
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.3
    • /
    • pp.169-174
    • /
    • 2007
  • Building integrated photovoltaic(BIPV) system operates as a multi-functional building construction material. They not only produce electricity, but also are building integral components such as facade, roof, window and shading device. As PV modules function like building envelope in BIPV, combined thermal and PV performance should be simultaneously evaluated. This study is to establish basic Information for designing effective BIPV by discovering relations between temperature and generation capability through experiment when the PV module is used as roof material for houses. To do so, we established 3kW full scale mock-up model with real size house and attached an PV array by cutting in half. This is to assess temperature influence depending on whether there is a ventilation on the rear side of PV module or not.

The Operating Characteristics of 3kW BIPV System (3kW BIPV시스템의 운전특성)

  • Kim J.H.;Park J.M.;Choi Y.O.;Choi S.J.;Cho G.B.;Baek H.R.
    • Proceedings of the KIPE Conference
    • /
    • 2006.06a
    • /
    • pp.552-554
    • /
    • 2006
  • BIPV(Building Integrated PV) system can expect dual effects that reduce expenses for establishment of PV system by adding new function as outer covering material of building expect producing the electricity. But, there are many generation differences according to the exterior environmental facts(solar cell array, design and installation condition of interactive inverter system) Therefore, it is difficult to optimum design. Consequently in advance design system, we experiment 3kW BIPV(Building Integrated PV) generation. We concrete PV system efficient application of variable. BIPV system that is proposed in this paper, was established in Solar Energy research center of Chosun University, composed with system. This research is a basic study for application of building integrated photovoltaic system for building

  • PDF