• 제목/요약/키워드: Building Height

검색결과 1,081건 처리시간 0.032초

부산시 산지경관 관리를 위한 건축물 높이 규제 방법에 관한 연구: 황령산 산림스카이라인을 중심으로 (Busan building height regulations for the management of mountain landscape: focused on the skyline of Hwangreung Mountain)

  • 한성근
    • 한국산학기술학회논문지
    • /
    • 제12권2호
    • /
    • pp.970-978
    • /
    • 2011
  • 최근 부산시내 자연경관이 양호한 지역에 고층건물들이 무분별하게 들어서 도시경관의 핵심이 되는 산림스카이라인을 깨트리는 동시에 도시 내 녹시율을 심각하게 떨어뜨리고 있는 실정이다. 따라서 도시민들의 삶의 질과 도시경관의 쾌적성을 향상시키고 도시의 녹시율을 높이기 위해서는 산림스카이라인의 효율적인 관리방안이 마련되어야 할 것이다. 이를 위하여 본 연구는 기존 산림스카이라인의 관리를 위한 건축물 고도규제 수단으로 사용하는 시곡면 분석의 문제점을 보안할 수 있는 GIS를 활용한 다중시곡면 분석과 건축물 높이에 큰 영향을 미치는 용적률을 비교 분석하여 건축물의 높이 규제 방향을 제시하고자 하였다. 이를 위하여 연구의 공간적 대상은 부산시 남구 대연동 주변 주거지역을 대상으로 하였으며, 분석방법에 있어서 다중 조망점 선정을 통하여 객관성을 확보하는 동시에 효율성을 높였다. 또한 주요지점에서 시뮬레이션결과를 반영함으로써 종합적인 경관계획이 가능하게 하였다. 마지막으로 본 연구는 산림지역의 지리적 여건에 맞추어 산림스카이라인 보호를 위한 건축물의 높이 규제의 방안을 제안하였다.

서울 건물정보 자료를 활용한 UM 기반의 도시캐노피 모델 입력자료 구축 및 평가 (Development and Evaluation of Urban Canopy Model Based on Unified Model Input Data Using Urban Building Information Data in Seoul)

  • 김도형;홍선옥;변재영;박향숙;하종철
    • 대기
    • /
    • 제29권4호
    • /
    • pp.417-427
    • /
    • 2019
  • The purpose of this study is to build urban canopy model (Met Office Reading Urban Surface Exchange Scheme, MORUSES) based to Unified Model (UM) by using urban building information data in Seoul, and then to compare the improving urban canopy model simulation result with that of Seoul Automatic Weather Station (AWS) observation site data. UM-MORUSES is based on building information database in London, we performed a sensitivity experiment of UM-MOURSES model using urban building information database in Seoul. Geographic Information System (GIS) analysis of 1.5 km resolution Seoul building data is applied instead of London building information data. Frontal-area index and planar-area index of Seoul are used to calculate building height. The height of the highest building in Seoul is 40m, showing high in Yeoido-gu, Gangnam-gu and Jamsil-gu areas. The street aspect ratio is high in Gangnam-gu, and the repetition rate of buildings is lower in Eunpyeong-gu and Gangbuk-gu. UM-MORUSES model is improved to consider the building geometry parameter in Seoul. It is noticed that the Root Mean Square Error (RMSE) of wind speed is decreases from 0.8 to 0.6 m s-1 by 25 number AWS in Seoul. The surface air temperature forecast tends to underestimate in pre-improvement model, while it is improved at night time by UM-MORUSES model. This study shows that the post-improvement UM-MORUSES model can provide detailed Seoul building information data and accurate surface air temperature and wind speed in urban region.

전통주거안채의 정면비례체계에 관한 연구 - 전남지방 중.상류 주택을 중심으로 - (A Study on the Front Elevation Proportion System in Traditional Housing 'An-Chae' - Focused on the Middle-High Classes' Housing in Jeonnam District -)

  • 박지민;천득염
    • 건축역사연구
    • /
    • 제14권4호
    • /
    • pp.73-86
    • /
    • 2005
  • The purpose of this study is to prove the correlations among various factors what determined to formation of front elevation proportion system through making an actual survey and investigating. According to the analysis of them, we make conclusions as follows; 1, On the assumption that average distance of 1Kan(間) is 1, the height of foundation is 0.21, the height of floor from foundation is 0.24, the height of normal column from floor is 0.85, the height of eaves from foundation is 1.10. 2. Southeast faced buildings are wider than southwest faced buildings in the distance of 1Kan (間) in the range of $110{sim}220mm$. The height of foundation and floor in the southeast faced buildings are higher than those in southwest faced buildings beside the height of normal column, eaves, high column in the southwest faced buildings are higher than those in southeast faced buildings. 3. As number of front Kan(間) increases, the distance of 1Kan(間) decrease and the height of eaves and high column(高柱) increases. This is cause of making a maximum needed inner space by increasing the distance of 1Kan(間). This is an wisdom for living from ancestors. 4. As number of Dori(道里) increases, the distances of 1Kan are nearly same but the height of eaves and high column(高柱) increases about 300mm, This is a natural result from an increasing of building scale. 5. The distance of 1Kan(間) in later 19C building is most wide but, the unit heights are minimal average values at year 1900 as a reference mark. After this, the height of normal column, eaves, high column are higher about $170{sim}330mm$. 6. The number of Kan in front elevation, Dori(道里), and direction of building have correlations each other in proportion system of traditional housing An-Chae with significant level, p<0.05.

  • PDF

도로환경에 따른 최적의 방음벽 높이 산정식 연구 (Development of an Optical Height Formula for Noise Barrier Considering the Road Environment)

  • 임유진;문학룡
    • 한국도로학회논문집
    • /
    • 제17권4호
    • /
    • pp.63-68
    • /
    • 2015
  • PURPOSES : A study on the efforts to minimize the road traffic noise has been underway. An attempt has been made to measure the noise level using a noise map; however, the attempt is limited to certain areas only. In general, a noise barrier is employed to prevent road traffic noise; however, unplanned noise barriers developed without considering the surrounding environment, including excessively high walls, cause problems such as infringement on prospect right. Noise ceiling at daytime in Korea is 68 dB(A), which is relatively higher than in other countries. METHODS: The noise barrier used mainly for road noise reduction was analyzed to estimate the optimal height. Related variables such as road width, the height of the upper part, distance to the building, and angle (for instance, $30^{\circ}$). RESULTS : A formula to calculate the optical height of the noise barrier, considering the road environment (i.e., parameters such as road width and distance to building), was developed in this study in an attempt to mitigate the noise generated from the road. CONCLUSIONS : The formula to calculate the noise barrier is expected to lead to cost saving, accurate installation of barriers, and protection of the right of prospect.

A large eddy simulation on the effect of buildings on urban flows

  • Zhang, Ning;Jiang, Weimei;Miao, Shiguang
    • Wind and Structures
    • /
    • 제9권1호
    • /
    • pp.23-35
    • /
    • 2006
  • The effect of buildings on flow in urban canopy is one of the most important problems in local/micro-scale meteorology. A large eddy simulation model is used to simulate the flow structure in an urban neighborhood and the bulk effect of the buildings on surrounding flows is analyzed. The results demonstrate that: (a) The inflow conditions affect the detailed flow characteristics much in the building group, including: the distortion or disappearance of the wake vortexes, the change of funneling effect area and the change of location, size of the static-wind area. (b) The bulk effect of the buildings leads to a loss of wind speed in the low layer where height is less than four times of the average building height, and this loss effect changes little when the inflow direction changes. (c) In the bulk effect to environmental fields, the change of inflow direction affects the vertical distribution of turbulence greatly. The peak value of the turbulence energy appears at the height of the average building height. The attribution of fluctuations of different components to turbulence changes greatly at different height levels, in the low levels the horizontal speed fluctuation attribute mostly, while the vertical speed fluctuation does in high levels.

미기상 수치 모델을 이용한 고층아파트 입지에 따른 바람장 및 기온 변화 연구 (Study on the Change of Wind Field and Temperature According to Location of High-rise Building Using Micrometeorology Numerical Model)

  • 서홍석;김유곤;양고수
    • 대한환경공학회지
    • /
    • 제33권5호
    • /
    • pp.340-352
    • /
    • 2011
  • 본 연구에서는 미기상 수치 모델 ENVI-MET3.0을 이용하여 고층 건물 입지에 따른 바람장과 기온 변화를 분석하였다. 대상지역은 고층 아파트 단지가 계획되어 있는 전주시 도심지이며, 실제 설계 자료를 적용하였다. 건물 입지에 따른 미기상 변화를 분석하기 위해 건물 입지전과 후에 대해 모델링을 수행한 후, 그 변화량을 분석하였다. 모델링 수행시 기상 조건은 연구대상 지역의 기후분석을 통해 두 가지를 선정하였는데, 첫 번째 조건은 풍향을 남남동(SSE)풍, 두 번째 조건은 풍향을서(W)풍 계열로 하였다. 바람길 분석은 풍속, 열섬 분석은 기온 변화량을 통해 분석을 실시하였다. 풍속 분석 결과, 건물 높이보다 낮은 고도에서는 바람이 유입되는 지역에서는 0.2~2.5 m/s 정도 증가한 반면, 건물 사이에서는 0.5~2.0 m/s 정도 감소하였다. 건물 높이 이상의 고도에서는 건물이 위치한 단지 내에서는 0.1~0.8 m/s m/s 정도 감소하는 반면, 단지 외부에서는 0.2~0.4 m/s 정도 증가하였다. 열섬 분석 결과, 건물 높이보다 낮은 고도에서는 건물이 위치한 단지 내와 풍하방향 지역에서는 기온이 $0.01{\sim}0.1^{\circ}C$ 증가한 반면, 단지 외부에서는 $0.01{\sim}0.05^{\circ}C$ 감소하였다. 건물 최고 높이 부근에서는 대부분의 지역에서 $0.05{\sim}0.2^{\circ}C$ 정도 감소하였다.

곤돌라형 외벽 유지보수 로봇의 수직위치 센서 개발에 관한 연구 (A Study on the Development of Height Estimation Sensor for Gondola-typed Façade Robot)

  • 윤종수;김동엽;박창우
    • 한국정밀공학회지
    • /
    • 제30권4호
    • /
    • pp.383-389
    • /
    • 2013
  • Demand for high-rising building has arisen. However, its maintenance is usually executed by labour. It could have a severe problem. We proposed a gondola robot to solve it. In this paper, we designed a height estimation sensor for this gondola. It is consist of pan-tilt unit, ARS sensor, and laser sensor. The pan-tilt unit keeps the laser sensor to indicate the gravity direction by referencing the ARS. The laser sensor's range is vertical distance from gondola to ground. However, if there is an obstacle under the gondola, the distance includes its height. To filter it out, we apply a Kalman filter for the height estimation. If the estimated height is changed extremely, the filter decides that there is an obstacle. Then, it remembers the height of obstacle. Other extreme changes of height estimations are reflected. The experimental results using the proposed sensor system show detail flow of the height estimation.

쿤-터커 조건을 이용한 건물의 에너지성능과 비용 최적화방법 (Optimization Method of Building Energy Performance and Construction Cost Using Kuhn-Tucker Conditions)

  • 원종서;구재오
    • KIEAE Journal
    • /
    • 제3권2호
    • /
    • pp.51-58
    • /
    • 2003
  • The purpose of this study is to present rational methods of multi-criteria optimization of the shape of energy saving buildings. The object is to determine the optimum dimension of the shape of a building, based on the following criteria: minimum building costs (including the cost of materials and construction) and yearly heating costs. Mathematical model described heat losses and gains in a building during the heating season. It takes into consideration heat losses through wall, roof, floor and windows. Particular attention was paid to have a more detailed description of heat gains due to solar radiation. On the assumption that shape of building is rectangle in order to solve the problem, the proportions of wall length and building height are determined by using non-linear programing methods(Kuhn-Tucker Conditions). The results constitute information for designers on the optimum proportions of wall lengths, height, and the ratios of window to wall areas for energy saving buildings.

건물 지붕 구조를 활용한 건물일체형 풍력발전시스템의 성능 예측 (Pitched Roof-Building Integrated Wind Turbine System Performance Estimation)

  • 최형식;장호남
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2008년도 추계학술대회 논문집
    • /
    • pp.324-327
    • /
    • 2008
  • We simulated the performance improvement of a wind turbine installed on the pitched roof-building(apartment in urban area, 50m height). A nozzle shape wind guide is added on the roof of a model apartment. The nozzle-diifuser structure effects for the free stream wind (average 4m/s, 50m height in Incheon) is studied by a basic CFD analysis. This paper examines the effects of roof structure on the wind velocity and the wind distortion effects by a front building. The possible wind power generation capacity on building roof in urban is calculated.

  • PDF

Seismic assessment of slender high rise buildings with different shear walls configurations

  • Farghaly, Ahmed Abdelraheem
    • Advances in Computational Design
    • /
    • 제1권3호
    • /
    • pp.221-234
    • /
    • 2016
  • The present study dictates the behavior of shear wall under a seismic event in slender high rise buildings, and studies the effect of height, location and distribution of shear wall in slender high rise building with and without boundary elements induced by the effect of an earthquake. Shear walls are located at the sides of the building, to counter the earthquake forces. This study is carried out in a 12 storeys building using SAP2000 software. The obtained results disclose that the behavior of the structure is definitely affected by the height and location of shear walls in slender high rise building. The stresses are concentrated at the limit between the shear wall region and the upper non shear wall especially for shear walls without columns. Displacements are doubled between the shear wall region and the upper non shear wall especially for shear walls without columns.