• Title/Summary/Keyword: Building Height

Search Result 1,086, Processing Time 0.027 seconds

Improvement of Small-size Multi-housing Area Reconstruction Project Using AHP Analysis (AHP분석을 통한 가로주택정비사업의 개선방안)

  • Kim, Suk-Joon;Lee, Sang-Ho;Huh, Young-Ki
    • Korean Journal of Construction Engineering and Management
    • /
    • v.20 no.2
    • /
    • pp.79-85
    • /
    • 2019
  • The policy introduced recently in order to promote small-size reconstruction housing projects for rehabilitating downtown area consists of aged multi houses has been little practiced, as preferential provisions for such projects are more likely applicable for large projects. Several expert interviews and surveys were conducted to find efficient clauses to overcome the problems and their relative weights. As the results, it is revealed that 'relation of floor area ratio' and 'relaxation of building height limit criteria' are the most effective whereas 'purchasing and operating of residents' common facilities with public fund' is little. The study results would be a great interests for public institutions to rebuild aged housing area without destroying local communities and to provide socially disadvantaged class with rental housing at the same time.

Cyclic testing of scaled three-story special concentrically braced frame with strongback column

  • Chen, Chui-Hsin;Tsai, Yi-Rung;Tang, Yao
    • Earthquakes and Structures
    • /
    • v.17 no.2
    • /
    • pp.163-173
    • /
    • 2019
  • For Special Concentrically Braced Frame (SCBF), it is common that the damage concentrates at a certain story instead of spreading over all stories. Once the damage occurs, the soft-story mechanism is likely to take place and possibly to result in the failure of the whole system with more damage accumulation. In this study, we use a strongback column which is an additional structural component extending along the height of the building, to redistribute the excessive deformation of SCBF and activate more structural members to dissipate energy and thus avoid damage concentration and improve the seismic performance of SCBF. We tested one-third-scaled, three-story, double-story X SCBF specimens with static cyclic loading procedure. Three specimens, namely S73, S42 and S0, which represent different combinations of stiffness and strength factors ${\alpha}$ and ${\beta}$ for the strongback columns, were designed based on results of numerical simulations. Specimens S73 and S42 were the specimens with the strongback columns, and S0 is the specimen without the strongback column. Test results show that the deformation distribution of Specimen S73 is more uniform and more brace members in three stories perform nonlinearly. Comparing Drift Concentration Factor (DCF), we can observe 29% and 11% improvement in Specimen S73 and S42, respectively. This improvement increases the nonlinear demand of the third-story braces and reduces that of the first-story braces where the demand used to be excessive, and, therefore, postpones the rupture of the first-story braces and enhances the ductility and energy dissipation capacity of the whole SCBF system.

Wind tunnel tests and CFD simulations for snow redistribution on 3D stepped flat roofs

  • Yu, Zhixiang;Zhu, Fu;Cao, Ruizhou;Chen, Xiaoxiao;Zhao, Lei;Zhao, Shichun
    • Wind and Structures
    • /
    • v.28 no.1
    • /
    • pp.31-47
    • /
    • 2019
  • The accurate prediction of snow distributions under the wind action on roofs plays an important role in designing structures in civil engineering in regions with heavy snowfall. Affected by some factors such as building shapes, sizes and layouts, the snow drifting on roofs shows more three-dimensional characteristics. Thus, the research on three-dimensional snow distribution is needed. Firstly, four groups of stepped flat roofs are designed, of which the width-height ratio is 3, 4, 5 and 6. Silica sand with average radius of 0.1 mm is used to model the snow particles and then the wind tunnel test of snow drifting on stepped flat roofs is carried out. 3D scanning is used to obtain the snow distribution after the test is finished and the mean mass transport rate is calculated. Next, the wind velocity and duration is determined for numerical simulations based on similarity criteria. The adaptive-mesh method based on radial basis function (RBF) interpolation is used to simulate the dynamic change of snow phase boundary on lower roofs and then a time-marching analysis of steady snow drifting is conducted. The overall trend of numerical results are generally consistent with the wind tunnel tests and field measurements, which validate the accuracy of the numerical simulation. The combination between the wind tunnel test and CFD simulation for three-dimensional typical roofs can provide certain reference to the prediction of the distribution of snow loads on typical roofs.

Ductility demands and reduction factors for 3D steel structures with pinned and semi-rigid connections

  • Llanes-Tizoc, Mario D.;Reyes-Salazar, Alfredo;Ruiz, Sonia E.;Bojorquez, Eden;Bojorquez, Juan;Leal Graciano, Jesus M.
    • Earthquakes and Structures
    • /
    • v.16 no.4
    • /
    • pp.469-485
    • /
    • 2019
  • A numerical investigation regarding local (${\mu}_L$) and story (${\mu}_S$) ductility demand evaluation of steel buildings with perimeter moment resisting frames (PMRF) and interior gravity frames (IGF), is conducted in this study. The interior connections are modeled, firstly as perfectly pinned (PP), and then as semi-rigid (SR). Three models used in the SAC steel project, representing steel buildings of low-, mid-, and high-rise, are considered. The story ductility reduction factor ($R_{{\mu}S}$) as well as the ratio ($Q_{GL}$) of $R_{{\mu}S}$ to ${\mu}_L$ are calculated. ${\mu}_L$ and ${\mu}_S$, and consequently structural damage, at the PMRF are significant reduced when the usually neglected effect of SR connections is considered; average reductions larger than 40% are observed implying that the behavior of the models with SR connections is superior and that the ductility detailing of the PMRF doesn't need to be so stringent when SR connections are considered. $R_{{\mu}S}$ is approximately constant through height for low-rise buildings, but for the others it tends to increase with the story number contradicting the same proportion reduction assumed in the Equivalent Static Lateral Method (ESLM). It is implicitly assumed in IBC Code that the overall ductility reduction factor for ductile moment resisting frames is about 4; the results of this study show that this value is non-conservative for low-rise buildings but conservative for mid- and high-rise buildings implying that the ESLM fails evaluating the inelastic interstory demands. If local ductility capacity is stated as the basis for design, a value of 0.4 for $Q_{GL}$ seems to be reasonable for low- and medium-rise buildings.

A Study on the Rebuilding Existences of Saethul Maul Project and Landscape Composing of Gestalt Psychology in the Vulnerable Villages - Focused on the Vulnerable Villages Consulted by Experts - (취약지역생활 여건개조 사업현황과 마을 경관구조의 형태심리학적 연구 - 컨설팅대상 마을을 중심으로 -)

  • Chong, Geon-Chai
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.24 no.3
    • /
    • pp.31-38
    • /
    • 2022
  • The purpose of this study is to rediscover the gestalt psychological value of the Landscaping structure and architectural landscape in the vulnerable village consulted by experts in 2021 year. For this study, nine villages called of Saethul Maul were surveyed, and two of them were analyzed for landscape composing of gestalt psychology. The two villages, Yulwon and Jeonchon, included the case where the landscaping structure of residence was viewed from outside the village and the case from within the village. Psychological distance of the villages is analyzed by D/H ratio for the scenery seen from lanes. There are three expected conclusions. First, in terms of gestalt psychology, the buildings mean a figure, and the rice field in front of the village, the mountains behind the village, and the lanes represent a landscape structure consisting a background(ground). It captures the unique landscape aesthetics of the vulnerable village. Second, the landscape seen in the village shows various differences in horizontal distance and vertical height of the lane, so even if the psychological distance gives a sense of closure, it gives a sense of rhythm and change. However, considering the psychological distance (D/H ratio) when the roads are expanded for the fire car, the village landscape can be re-formed by safety and function. Third, the architectural landscape of Yulwon village is characterized by the harmonious arrangement of traditional houses, Narack-Doiji (rice barn), and wooden building (agricultural barn) in the background of chestnut tree hill behind the village. It is necessary to reduce the use of industrial materials and restore the valuable architectural landscape of the vulnerable village.

Non-Gaussian feature of fluctuating wind pressures on rectangular high-rise buildings with different side ratios

  • Jia-hui Yuan;Shui-fu Chen;Yi Liu
    • Wind and Structures
    • /
    • v.37 no.3
    • /
    • pp.211-227
    • /
    • 2023
  • To investigate the non-Gaussian feature of fluctuating wind pressures on rectangular high-rise buildings, wind tunnel tests were conducted on scale models with side ratios ranging from 1/9~9 in an open exposure for various wind directions. The high-order statistical moments, time histories, probability density distributions, and peak factors of pressure fluctuations are analyzed. The mixed normal-Weibull distribution, Gumbel-Weibull distribution, and lognormal-Weibull distribution are adopted to fit the probability density distribution of different non-Gaussian wind pressures. Zones of Gaussian and non-Gaussian are classified for rectangular buildings with various side ratios. The results indicate that on the side wall, the non-Gaussian wind pressures are related to the distance from the leading edge. Apart from the non-Gaussianity in the separated flow regions noted by some literature, wind pressures behind the area where reattachment happens present non-Gaussian nature as well. There is a new probability density distribution type of non-Gaussian wind pressure which has both long positive and negative tail found behind the reattachment regions. The correlation coefficient of wind pressures is proved to reflect the non-Gaussianity and a new method to estimate the mean reattachment length of rectangular high-rise building side wall is proposed by evaluating the correlation coefficient. For rectangular high-rise buildings, the mean reattachment length calculated by the correlation coefficient method along the height changes in a parabolic shape. Distributions of Gaussian and non-Gaussian wind pressures vary with side ratios. It is inappropriate to estimate the extreme loads of wind pressures using a fixed peak factor. The trend of the peak factor with side ratios on different walls is given.

A Study on the Perceptual Characteristics of Upper-class Houses in the Joseon Dynasty through Sectional Analysis - Focused on the Kyeong Buk Region 'ㅁ' Shape of House - (단면분석을 통한 조선시대 상류주택 안마당의 시지각 특성에 관한 연구 - 경북지방 'ㅁ'자형 주택을 중심으로 -)

  • Sung, Jae-Joong;Lee, Seung-Yong
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.24 no.4
    • /
    • pp.9-16
    • /
    • 2022
  • The purpose of this study is to analyze the cross-sectional ratio of the courtyard, an external space that not only was used as a workplace, shelter, and playground in our lives, but also gave symbolic meaning to Koreans. Since the beginning of 2000, Hanok began to receive rapid attention from people, and Hanok construction and remodeling were actively carried out in urban and rural areas. In particular, Bukchon and Seochon in Seoul, around Cheonmachong in Gyeongju, and Hanok Village in Jeonju became popular places related to hanok, and Gyeongju, Buyeo, Gongju, and Iksan were designated as ancient districts to encourage the construction of hanok. However, although hanok is being built with national trends, support, and interest, attention is focused only on the external form, materials, and convenience of use, and the composition and system of the external space have not been properly reviewed. Therefore, this study aims to understand the functions and meanings of the yard in traditional housing, and to analyze the proportion of the height of the building surrounding the yard and the depth of the yard in terms of closure and opening. In addition, the system and characteristics of the external space of traditional architecture felt by this can be used as basic data in designing traditional architecture.

Performance Comparison of Machine Learning Models for Grid-Based Flood Risk Mapping - Focusing on the Case of Typhoon Chaba in 2016 - (격자 기반 침수위험지도 작성을 위한 기계학습 모델별 성능 비교 연구 - 2016 태풍 차바 사례를 중심으로 -)

  • Jihye Han;Changjae Kwak;Kuyoon Kim;Miran Lee
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_2
    • /
    • pp.771-783
    • /
    • 2023
  • This study aims to compare the performance of each machine learning model for preparing a grid-based disaster risk map related to flooding in Jung-gu, Ulsan, for Typhoon Chaba which occurred in 2016. Dynamic data such as rainfall and river height, and static data such as building, population, and land cover data were used to conduct a risk analysis of flooding disasters. The data were constructed as 10 m-sized grid data based on the national point number, and a sample dataset was constructed using the risk value calculated for each grid as a dependent variable and the value of five influencing factors as an independent variable. The total number of sample datasets is 15,910, and the training, verification, and test datasets are randomly extracted at a 6:2:2 ratio to build a machine-learning model. Machine learning used random forest (RF), support vector machine (SVM), and k-nearest neighbor (KNN) techniques, and prediction accuracy by the model was found to be excellent in the order of SVM (91.05%), RF (83.08%), and KNN (76.52%). As a result of deriving the priority of influencing factors through the RF model, it was confirmed that rainfall and river water levels greatly influenced the risk.

Pilot Test of Grid-Type Underground Space Considering Underground Complex Plant Operation (지하 복합플랜트 운영 중 확장을 고려한 격자형 지하공간 파일럿 테스트)

  • Chulho Lee
    • Tunnel and Underground Space
    • /
    • v.33 no.6
    • /
    • pp.472-482
    • /
    • 2023
  • The grid-type or room-and-pillar method is applied for the purpose of mining horizontally buried minerals. In this study, design and pilot test were performed to apply the room-and-pillar method which uses natural rock as a rock pillar to the construction of underground space. The area where the pilot test was conducted was in stone mine and had good rock conditions with an appropriate depth (about 30 m) to apply the pilot test. The pilot test site was selected by reviewing accessibility and ground conditions and then site construction was performed through detailed ground investigation and design. The pilot test was designed with a column shape of 8×8 m and a cross-section of 8×12 m. The blasting pattern was determined through test blasting at the site, and blasting of 3 m excavation with 89 holes was performed. Through field observations, the average width of 12.5 m and the average height of 8.3 m were measured. Therefore, it is possible to proceed similar to the cross-sectional shape considered in the design.

An experimental study on the behavior of the helical tiebacks in the flexible retaining walls

  • Majid Khanjani;Hamid Reza Saba;Seyed Hamid Lajevardi;Seyed Mohammad Mirhosseini;Ehsanollah Zeighami
    • Geomechanics and Engineering
    • /
    • v.36 no.6
    • /
    • pp.527-543
    • /
    • 2024
  • In the implementation of most civil structures, especially underground, deep excavations with a vertical slope are required. Using flexible retaining walls is applied as one of the ways to stabilize vertical holes. Therefore, it is necessary to know the parameters affecting the performance of such walls in reducing their horizontal movement. In this research, by building a suitable laboratory model, the parameters of the amount of flexibility, the embedment depth of the wall, the type and number of tieback in the wall were investigated for 42 static laboratory models. The purpose of this research is to study the flexible retaining wall with helical tieback compared to simple tieback at different heights, which shows the best performance in terms of reducing horizontal displacement in proportion to increasing or decreasing flexibility. On the other hand, one of the parameters affecting the flexibility of the wall, which is its bending stiffness, was extracted by numerical software outputs and studied on the results such as relative flexibility, stiffness, safety and numerical stability of the wall.The results of this study show that among the parameters, in the first place, the effect of the type of tieback is inhibited and in the second place, the ratio of thickness to wall height is known as the most important parameter. the best performance for walls with the helical tiebacks in reducing their horizontal displacement can be economically, flexibly and stability assigned to a wall that tiebacks is in the range of H2/t to H4/t and its flexibility ratio is 2/3.