• Title/Summary/Keyword: Building Energy Modeling and Analysis

Search Result 95, Processing Time 0.024 seconds

A Study for Automated Division of Composite Walls for Quantity Take-off in Construction Document Phase (실시설계단계에서 수량산출을 위한 복합벽체 자동분할에 관한 연구)

  • Park, Seunghwa;Kim, Heungsoo;Yoon, Dooyung
    • Korean Journal of Computational Design and Engineering
    • /
    • v.20 no.2
    • /
    • pp.124-132
    • /
    • 2015
  • When Building Information Modeling (BIM) was introduced at the early stage, it was only utilized as a three-dimensional visualization tool. Nowadays, however, BIM is being studied for increasing design productivity and managing enormous information on building life cycle. One of the representative research is developing 'common prototype BIM libraries'. BIM data made of common prototype libraries should be utilized in various ways, quantity takeoff, code checking, energy analysis and so on. However, common prototype BIM libraries are not enough to estimate accurate cost. For example, composite wall libraries should be divided into several single objects, wall structure and finishes, for the quantity takeoff and construction cost calculation. In this paper, we are suggesting an automated division algorithm of composite wall and developing a system prototype for it. This study is expected to reduce extra modeling work and contribute to fast and accurate cost calculation in the construction.

Analysis of the Energy Consumption of Tourism Hotels in Relation to Individual and Locational Characteristics (관광호텔의 호텔특성 및 입지특성에 따른 에너지사용량 분석)

  • Park, Hyeran;Kim, Hyunsoo;Choi, Yeol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.4
    • /
    • pp.571-579
    • /
    • 2022
  • This research empirically analyzed the factors associated with the energy consumption of tourism hotels in Busan, Ulsan, and the Kyoungnam region of Korea based on their individual and locational characteristics. The study adopted a comprehensive modeling approach involving multi-level regression analyses that allowed for improved accuracy by considering the hierarchical structures of the hotels and their locational characteristics. The results indicated that the majority of energy consumption can be explained by the hotels'individual characteristics, including the size of building structure and the services, while their effects vary by region with statistical significance. Furthermore, the proximity to central commercial districts and hotel clusters had a significant influence on the variability in their energy consumption, indicating that locational factors are also important determinants. The findings here suggest the need for regional energy policies and solutions at various urban scales along with conventional energy policies at the building level and highlight regional responsibilities when attempting to create sustainable tourism industries.

Simulation Analysis and Development of Matlab/Simulink Model for Stand-alone Operation of Emergency Diesel Synchronous Generator-based Hybrid Energy System (비상용 디젤동기발전시스템기반 독립운전 하이브리드에너지시스템 모델 설정 및 시뮬레이션 분석에 관한 연구)

  • Hong, Won-Pyo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.1
    • /
    • pp.70-79
    • /
    • 2015
  • In this paper, enhanced stand-alone operation and development of Matlab/Simulink model of emergency diesel based hybrid energy system is presented. Simulations based on the remote community or islands were performed for PV-diesel-battery hybrid system. Modeling of PV-diesel-battery integrated system is done to perform under the solar radiation and load conditions on Matlab/Simulink platform. The models of diesel generator unit, battery energy storage system, PV and frequency-power control are developed and simulation studies have been carried out under various conditions using Matlab/Simulink and SimPowerSystem. It is demonstrated that the proposed system can provide reliable and good quality power to the customers in diesel synchronous generator-based hybrid energy systems.

LEED Certification and Its Effectiveness on Urban Heat Island Effect

  • Kim, Hwan-Yong;Gu, Dong-Hwan
    • Journal of KIBIM
    • /
    • v.5 no.4
    • /
    • pp.30-36
    • /
    • 2015
  • The Leadership in Energy and Environmental Design (LEED) has provided abundant resources and guidelines for a new project to become a sustainable anchor in the neighborhood. Paired with a range of checklist, LEED has strong influence on the standards for a sustainable building, and it also has played an iconic role in energy-efficient architecture. However, it is still unclear as to whether or not an LEED certified building enhances environmental benefits to its surroundings. If an LEED certification promises a baseline for an eco-friendly building, then a group of these structures should ensure significant environmental benefits to the society. This is the main question of this study, and the authors answer this hypothesis by examining the relationship of LEED certificates and their influence on outdoor temperature, especially in terms of urban heat island effect. The goal of this paper is to analyze the influence of the LEED certification on urban temperature as an indicator of sustainable architecture's regional interactions. If an LEED certificate is regarded as a strong contributor to a sustainable built environment, then a group of these certificates should result in greater benefits to society. To this extent, the authors question if there is any possible relationship between a large concentration of LEED certified sites and the temperature of their surroundings. To properly assess the research direction, Global Moran's I analysis, Local Moran's I analysis, and Hot Spot analysis are implemented to find the clustered areas of LEED certified buildings. For examining relationships between clustered area and its temperature, correlation efficients are calculated.

MODEL FOR SUBWAY-INDUCED STRUCTURAL VIBRATION (지하철 진동이 구조물에 미치는 영향분석 모델)

  • 김희철;이동근;민경원
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1993.10a
    • /
    • pp.199-204
    • /
    • 1993
  • Noise and vibration induced by subway operation are one of the major factor that annoying residents living near the. railway. In general, lateral vibration was the major concern when we are considering vibration of the building. Since the energy due to earthquake is enormous it affects wide area. However, the vertical vibration became a major concern in considering the vibration induced by subway because relatively smaller energy affects only nearby areas than that of earthquake. Analysis model of the structure for the vertical vibration should consider the effect of beam vibration. Thus, the model of the structure for the lateral vibration can not be applied. Appropriate analysis model which can consider the inertia force of the beam is necessary when analyzing a structure for the vertical vibration. Modeling technique for the vertical vibration analysis of structures has been studied on this paper. It is recommeneded to use 2 or more elements for columns and to use 3 or more elements for beams when analyzing structures for vertical vibration induced by subway.

  • PDF

Modeling of Solar/Hydrogen/DEGS Hybrid System for Stand Alone Applications of a Large Store

  • Hong, Won-Pyo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.11
    • /
    • pp.57-68
    • /
    • 2013
  • The market for distributed power generation based on renewable energy is increasing, particularly for standalone mini-grid applications in developing countries with limited energy resources. Stand-alone power systems (SAPS) are of special interest combined with renewable energy design in areas not connected to the electric grid. Traditionally, such systems have been powered by diesel engine generator sets (DEGS), but also hybrid systems with photovoltaic and/or wind energy conversion systems (WECS) are becoming quite common nowadays. Hybrid energy systems can now be used to generate energy consumed in remote areas and stand-alone microgrids. This paper describes the design, simulation and feasibility study of a hybrid energy system for a stand-alone power system. A simulated model is developed to investigate the design and performance of stand-alone hydrogen renewable energy systems. The analysis presented here is based on transient system simulation program (TRNSYS) with realistic ventilation load of a large store. Design of a hybrid energy system is site specific and depends on the resources available and the load demand.

Design and fabrication of capsules with isotropic destruction intensity (등방 파괴 강도를 갖는 캡슐 설계 및 제작)

  • Lim, Tae-Uk;Cheng, Hao;Hu, Jie;Wang, Shu-Le;Jung, Won-Suk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.247-248
    • /
    • 2022
  • 3D printer-based self-healing capsules have been proposed to heal cracks by enabling various structural designs, repeatable fabrication, and strength analysis of the capsules. The Fusion Deposition Modeling (FDM) method was used to design, analyze, and produce new self-healing capsules that are widely used at low cost. However, PLA extruded from FDM has low interlayer adhesion energy, and thus strength varies depending on the angle of load applied to the laminated layer and the concrete structure, thereby degrading the performance of the self-healing capsule. Therefore, in this paper, the structure of the capsule manufactured by the FDM PLA method has isotropic strength was designed. In addition, the fracture strength in the x, y, and z directions of the load applied through the compression test was analyzed. As a result, it was confirmed that the newly proposed capsule design has an isotropic fracture strength of 1400% in all directions compared to the existing spherical thin-film capsule.

  • PDF

Capacity and Power Input Performance Curves Creation of Water-cooled VRF Heat Pump for EnergyPlus (EnergyPlus 해석용 수랭식 VRF 히트펌프의 냉·난방 능력 및 소비전력 예측식 산출 기법)

  • Kim, Min-Ji;Kwon, Hyuk-Joo;Lee, Kwang Ho
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.13 no.3
    • /
    • pp.1-8
    • /
    • 2017
  • Variable refrigerant flow (VRF) systems have recently attracted attention in many countries due to a variety of advantages over conventional system. Especially, the water-cooled VRF heat pump, including geothermal heat pump, is a system that accurately controls the flow rate of refrigerant for the improved efficiency under part load operation. This paper describe the process of generating the cooling and heating energy performance curve coefficients and performance expressions for modeling water cooled VRF system using EnergyPlus. Through this study, the process for generating performance curves can be implemented into EnergyPlus or other comparable building energy analysis tools for the long-term evaluation of heat pump under dynamic conditions.

Determining elastic lateral stiffness of steel moment frame equipped with elliptic brace

  • Habib Ghasemi, Jouneghani;Nader, Fanaie;Mohammad Talebi, Kalaleh;Mina, Mortazavi
    • Steel and Composite Structures
    • /
    • v.46 no.3
    • /
    • pp.293-318
    • /
    • 2023
  • This study aims to examine the elastic stiffness properties of Elliptic-Braced Moment Resisting Frame (EBMRF) subjected to lateral loads. Installing the elliptic brace in the middle span of the frames in the facade of a building, as a new lateral bracing system not only it can improve the structural behavior, but it provides sufficient space to consider opening it needed. In this regard, for the first time, an accurate theoretical formulation has been developed in order that the elastic stiffness is investigated in a two-dimensional single-story single-span EBMRF. The concept of strain energy and Castigliano's theorem were employed to perform the analysis. All influential factors were considered, including axial and shearing loads in addition to the bending moment in the elliptic brace. At the end of the analysis, the elastic lateral stiffness could be calculated using an improved relation through strain energy method based on geometric properties of the employed sections as well as specifications of the utilized materials. For the ease of finite element (FE) modeling and its use in linear design, an equivalent element was developed for the elliptic brace. The proposed relation was verified by different examples using OpenSees software. It was found that there is a negligible difference between elastic stiffness values derived by the developed equations and those of numerical analysis using FE method.

An Economic Evaluation Study of Office Remodeling and Green-remodeling Projects : A Simulation Approach to a Rental Office in GBD, Seoul (생애주기를 고려한 오피스 건물의 리모델링과 그린리모델링의 경제성 평가 연구 : 서울시 강남업무지구의 임대오피스 사례)

  • Lee, Seong-Ho;Lee, Jae-Su
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.34 no.3
    • /
    • pp.23-34
    • /
    • 2018
  • Due to a waste of energy in korea, about 525,000 which are 75 percent of total buildings are at least 15 years old buildings that need remodeling. There are two current remodeling systems. One is a remodeling system to reduce a waste of resources from the reconstruction. The other is a green-remodeling system aimed to energy savings and reducing environmental costs. This study is to analyze quantitatively these current systems with respect to the cost-benefit caused by the life cycle and suggests the political and institutional implications through the interpretation of the results. For a quantitative analysis, we analyzed reducing maintenance costs and rent benefits with simulation by using opportunity costs, construction costs, plan costs and supervision costs as expense variables and using the reduced floor area ratio, institutional incentives, energy, water resources and certified emission reduction(CER) as benefit variables. As a result of the empirical study, the green-modeling was more beneficial in the field of environment such as the energy savings, however, the final benefits of remodeling which has no green building certification costs but more floor area ratio incentives were more economical. The green-remodeling system focused on reducing environmental costs and energy savings needs a equatable institutional incentive system.