• Title/Summary/Keyword: Building Energy Efficiency

Search Result 736, Processing Time 0.028 seconds

A METHOD FOR PREDICTING THE ENERGY CONSUMPTION OF A BUILDING IN EARLY STAGE OF DESIGN

  • Ji-Yeon Seo;Su-Kyung Cho;Yeon-Woong Jung;Hyung-Jin Kim;Jae Ho, Cho;Jae-Youl Chun
    • International conference on construction engineering and project management
    • /
    • 2013.01a
    • /
    • pp.304-307
    • /
    • 2013
  • Various programs have been developed to predict the energy consumption of a building as a result of recent increased social interest in the environmental friendliness of construction as measured by energy efficiency. The goal of environmental-friendliness, which is achieved by predicting the energy consumption of a building, can be realized in the design stage by applying a variety of technologies, planning factors and planning systems. However, most energy analyzing engines are only suitable for use in the advanced stages of design because of the large amount of design information that must be entered. Thus, because the simulation programs currently used are not suitable for use in the early stages of design, this study suggests a prediction logic that provides an overview of the energy consumption of a building according to its size, scope, and purpose by analyzing statistics collected by government agencies.

  • PDF

Economic Evaluation of Building Micro-Grid Including Geothermal Energy System in Hospital Buildings (지열시스템이 포함된 빌딩마이크로그리드 시스템의 에너지성능평가 및 경제성분석)

  • Kim, Byoung-Soo;Hong, Won-Pyo
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2009.10a
    • /
    • pp.273-277
    • /
    • 2009
  • This paper presents a basic energy performance data of micro gas turbine, Renewable Energy(BIPV and Solar Collector System, geothermal system) and a hybrid energy system(geothermal system and microturbine) installed in Hospital Building. The efficiency of solar collector and BIPV system was 30%, 10% individually, and lower than micro gas turbines. Micro gas turbines are small gas turbines that bum gaseous and liquid fuels to produce a high-energy exhaust gas and to generate the electrical power. Recently, the size range for micro gas turbines is form 30 to 500kW and power-only generation or in combined heat and power(CHP) systems. Finally, in energy performance aspect, Micro gas turbine system and hybrid energy system were high-efficiency system in hospital building. Hybrid energy system also give us a powerful alternative energy system economically.

  • PDF

A Study on the Application Method of Photovoltaic in Building (PV의 건축물 적용기법에 관한 연구)

  • Lee, E.J.;Kim, H.S.
    • Journal of the Korean Solar Energy Society
    • /
    • v.22 no.2
    • /
    • pp.1-10
    • /
    • 2002
  • This study is a study on the building integrated method of Photovoltaic. It was analyzed into a basic installation condition and an integrated form in this study. And it was confirmed through the 3D simulation & drawing work of an integrated situation to the real domestic building. The Photovoltaic installation of the country to an optimal efficiency for the year must be installed to the due south with an angle of thirty degrees. And also a module spacing must be more than doubled from the bottom to the top of module to prevent from efficiency falling by a shadow of photovoltaic module in a roof setting of flat roof. If Photovoltaic module is an adequate material that is a basic requirement as a building's finishing material, it's not only an efficiency of alternation with an existing finishing material but also a building's design element.

Analysis of Annual Operation Status of Central Heating and Cooling System in a Public Office Building (공공건물 중앙식 냉난방시스템의 연간 운영 사례 분석)

  • Ra, Seon-Jung;Aum, Tae-Yun;Son, Jin-Woong
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.36 no.2
    • /
    • pp.175-180
    • /
    • 2020
  • The purpose of this study was to clarify precautions during the design and operation phases for energy reduction in a public office building. To check the operation status of the building, we measured the indoor temperature and humidity in the office space of the building installed central heating and cooling systems. And we analyzed these data and annual BEMS data. As a result, we found six problems related to decreasing system efficiency. Based on these, we presented the information to improve the efficiency of the system from the design and operation phase. Also, we present the need for a system to support the decision-making of operational managers in real-time for the energy efficiency of the building.

A Study on the Evaluation of Building Energy Rating considering the Insulation performance of the Window in Apartment houses (공동주택에서의 창호성능에 따른 건물에너지 효율등급 평가 연구)

  • Kim, Chi-Hoon;Ahn, Byung-Lip;Hong, Sung-Hee;Jang, Cheol-Yong
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.291-295
    • /
    • 2009
  • As a reasonable energy policy has become required because of consuming substantial amounts of oil than others, the studies on energy consumption are in work for energy savings of buildings that spend up to 24% of total energy consumption. However, there aren't basic data on energy consumption and installationregulations for effective equipments in energy guzzled buildings. The best plan to reduce the building energy consumption is that the insulation performance should be improved because the insulation and airtight of building envelopes have an effect on the energy consumption basically. Thus, we should prepare the alternatives to improve insulation performance of envelopes and the efficiency of insulation performance of the window for reducing energy consumption.

  • PDF

A Evaluation Analysis on Thermal Performance of High Airtight and Insulated Window of High Efficiency Energy Equipment (고효율에너지기자재 고기밀성 단열창호의 단열성능 평가 연구)

  • Jang, Cheol-Yong;Bang, Joo-Young
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.227-230
    • /
    • 2009
  • Currently the country's foreign energy dependence reaches approximately 97% and the total energy consumption percentage of buildings(commercial and domestic parts) reaches approximately 24%. Building energy saving by enhanced insulation will be very important issue. Therefore, the solution is required to reduce energy loss and increasing displeasure caused by excessive influx of solar energy through windows, to solve the problems like decoloration on indoor furniture an clothes by harmful ultraviolet rays, air conditioning and increased cost. This research used for commercialization and ills semination by basic information through a evaluation on insulation performance of the window of high efficiency energy equipment which can improve the insulation performance.

  • PDF

A Study on the Evaluation of Apartment Building Energy Efficiency Rating Considering the Performance of Thermal Insulators and Window glasses (창호 및 단열재 변수에 따른 공동주택 에너지효율등급 평가 사례)

  • Kim, Han-Soo;Yun, Hae-Dong;Byun, Woon-Seob
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.706-711
    • /
    • 2009
  • Energy shortage and environmental pollution caused by fossil fuels are very serious problem. Especially buildings have consumed more and more energy, and buildings are spend up to 25% of total energy consumption. So we should prepare alternatives to save energy in buildings. In apartment houses, The efficiency of thermal insulators and window glasses is very important to curtail heating energy. In this study, the energy rating of Apartment building is evaluated by applying various thermal insulators and window glasses.

  • PDF

The Core Urban Design Strategies of Tall Building - Low Carbon Community

  • Liu, Enfang;Fan, Wenli;Pan, Jianing;Li, Jianqiang
    • International Journal of High-Rise Buildings
    • /
    • v.2 no.2
    • /
    • pp.85-91
    • /
    • 2013
  • Tall building has some controversial aspects with low carbon city, but it is still a sensible choice for the metropolitan city. This paper aims to develop holistic urban design strategies to minimize impacts on the environment, increase energy efficiency and improve the quality of living in tall building communities by utilizing tall building characteristics. It puts forward the concept of integrated tall building-low carbon community design from the perspective of urban design, and summarizes five core strategies: Temporal state based on energy use, Complementary energy use state based on functions, Spatial state based on regional environment features, Transportation state based on low-carbon lifestyle and Waste utilization state based on tall building characteristics. It also applies the strategies to a practical project. The results show that the proposed urban design strategies are available approaches to mitigate the side effects of tall building on low carbon city.

A Study on the BEMS Installation and performance Evaluation Method for Energy Monitoring(Measuring) of New Building (신축건물 에너지효율관리를 위한 환경 및 에너지모니터링(계측) 방법론)

  • Kwon, Won Jung;Yoon, Ji Hye;Kwon, Dong Myung
    • Journal of Energy Engineering
    • /
    • v.27 no.2
    • /
    • pp.32-48
    • /
    • 2018
  • Monitoring of energy use should be a priority in order to efficiently manage building energy use. Energy use in buildings can be managed by dividing them into energy sources, uses, and ZONE. By energy source, electricity, gas, fuel, and district heating are supplied to run the building's facilities. The purpose can be divided into five main applications, including cooling, heating, lighting, hot water and ventilation, but not many elevators and electric heaters that are difficult to include in the five applications are classified. ZONE Star refers to the comparison or separate management of areas for which the purpose of the building is similar or different. In addition, energy efficiency management requires control of the temperature, humidity, and people who will be measuring energy in the building, and the recent problem of fine dust should directly affect the ventilation of the building.

A methodology for verification of energy saving performance of Zero Energy School (ZES) (Zero Energy School(ZES) 에너지절감 성과 검증을 위한 방법론 연구)

  • Lee, Hangju;Ahn, JongWook;Kim, Insoo
    • Journal of Energy Engineering
    • /
    • v.28 no.1
    • /
    • pp.37-44
    • /
    • 2019
  • Domestic buildings account for 25% of national greenhouse gas emissions and 20% of energy consumption, so energy efficiency improvement of buildings is recognized as the main target of national energy demand management. To improve the energy efficiency of the building, policies are implemented by preparing "zero-energy building national roadmaps" and enhancing the efficiency of national energy demand management through early activation as a result of expansion of the mandatory zero-energy building. Also, there is a growing need to verify the performance of energy savings after the construction is completed. Therefore, methods for evaluating energy performance of buildings should be suggested. This paper aims to develop and present methods for verifying energy performance of Zero Energy School, which can be applied internationally, by visiting domestic schools on-site at the same time as international standards and guidance analysis.