• Title/Summary/Keyword: Building Energy Assessment System

Search Result 131, Processing Time 0.03 seconds

An Assessment of Energy Consumption on Deep Sea Water Cooling System (해양 심층수를 이용한 냉방시스템의 경제성 비교분석)

  • Park, Jin-Youn;Kim, Samuel;Jung, Kyung-Sik;Nam, Min-Sik
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.1279-1284
    • /
    • 2008
  • The alternative energy has lately attracted considerable attention due to the high oil price and environment problem. Deep sea water that is one of the natural energy sources should be getting popular continually to reduce the environment problem. In this study, cooling system of deep sea water using heat exchangers of two hotels where is located in near Hae-undae Bay has been analyzed on the quantity of electricity comparison between existing cooling system and deep seawater cooling system. As shortly, the results of study showed that the first building approximately saves 370 millions won per year, also the second building saves 248 millions won per year. It means that the cooling system by using deep sea water has great worth to reduce the ratio of fossil fuel.

  • PDF

Analysis of Energy Performance & Energy Saving with Geothermal Heat Pump System Using TRNSYS Program in a Large Scale Shopping Store (TRNSYS 프로그램을 이용한 대형쇼핑매장 에너지성능해석 및 지열시스템을 도입하는 경우 에너지절약 특성분석)

  • Hong, Won-Pyo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.1
    • /
    • pp.47-56
    • /
    • 2015
  • Energy consumption in buildings is currently a real problem. That is why both assessment of energy performance and effective energy management including renewable energy system are essential. Thus, this paper focuses on a case study to analyze the energy performance and cooling & heating energy saving of a large scale shopping store in Daejeon city. The reference building is simulated by using TRNSYS dynamic simulation tool to examine its annual energy consumption. For annual energy analysis of building, one year energy consumption is surveyed in the field. The related study is carried out in large scale shopping store to investigate the energy consumption and energy use trend of heating, cooling, hot water, lighting, ventilation, equipments and other. The evaluation of energy performance of the geothermal heat pump system installed in a large scale shopping store is also analyzed by TRNSYS tool. From simulation results, it evaluated that the geothermal heat pump system is effective energy savings method in large scale shopping store.

An Economic Analysis and Consideration on the Application of Photovoltaic System for Bridge Nightscape Energy Savings at Han River in Seoul (서울시 한강교량의 태양광발전시스템 적용 시 경관조명 에너지 절약에 관한 경제성 분석 및 고찰)

  • Park, Yoon-Min;Hong, Seong-Kwan;Choi, An-Seop
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.1
    • /
    • pp.42-49
    • /
    • 2011
  • PV(Photovoltaic) system is environmentally friendly power system using solar energy in renewable energy. PV system compared to other renewable energy power generation systems is relatively easy to install, so the dissemination is increasing worldwide. Especially, BIPV(Building Integrated Photovoltaic) is a system that PV modules are installed on the building and use renewable energy. But this system is difficult to apply due to the shadow of adjacent buildings and limited installation. In this study, payback period is calculated by Retscreen 2010, that is an economic assessment software of renewable energy, on applied to the bridge of PV system. As results, this study aims at actively considering the application.

Analyzing the Differential Views between the Designers and the Users on Certification Assessment Criteria of the G-SEED System - Focused on Certification Assessment Criteria for Apartment Buildings - (녹색건축 인증제도 평가항목에 대한 설계 실무자 및 사용자 의식 차이 분석 - 공동주택 인증 평가항목을 중심으로 -)

  • Choi, Yeo-Jin
    • KIEAE Journal
    • /
    • v.15 no.6
    • /
    • pp.87-92
    • /
    • 2015
  • Purpose: The green building certification system in Korea was introduced in 2002 and developed as an improvement version of the G-SEED(Green Standard for Energy and Environmental Design) system in 2013. This study conducts surveys targeting architectural designers and users on significance of certification assessment criteria for apartment buildings on the G-SEED system and examines the differential views between the two groups on assessment criteria. Method: First, The AHP(Analytic Hierarchy Process) method was used to find importance of assessment criteria and then the importances were compared with weighted points on the certification standard. Second, the t-test was used to investigate differential views between designer and user groups on certification assessment criteria based on drawn importances. Result: (1) While designer group considered land use and transportation, energy and environmental pollution, and water circulation management as more important, user group did material and resource, maintenance management, ecological environment, and indoor environment as more important. (2) Based on t-test results, sustainable energy, water circulation system, site management, habitat, acoustical environment, and light environment were found to be different on importance between the two groups.

A study on the proposal of environmental capacity criterion method for windows system in buildings (창호시스템의 환경성능평가기법 정립에 관한 연구)

  • Choi, Doo-Sung;Kim, Eun-Gyu;Cho, Kyun-Hyong
    • Journal of the Korean Solar Energy Society
    • /
    • v.24 no.3
    • /
    • pp.101-109
    • /
    • 2004
  • This research investigates the life-cycle energy consumption of the windows used for the building's exterior cladding, and its environmental potential aspects by utilizing the LCA. The research scope has taken account of the entire life-cycle of the windows from the extraction of raw materials to its disposal, of which given sample building type is an apartment building. Results gained from the LCA of the windows as one of the steps in analysis reflects the current global interest and analysis trend towards the world's environmental issue on all fields of industry including the architectural industry, of which its newly established standards of architectural windows can further promote more environmentally sustainable factor compared to the previous analysis (focused more on energy efficiency assessment of the use stage).

Economic Feasibility Assessment of a Deep Sea Water District Cooling System (건물냉방시스템에 해양심층수 적용의 경제성 분석)

  • Kim, Sam-Uel;Cho, Sooi
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.2
    • /
    • pp.14-21
    • /
    • 2009
  • Recently, alternative energy resources have emerged considerably due to the high oil prices and environment problems. Deep sea water that is one of the natural energy sources can be one of the attractive solutions to reduce the environment problems, and there are already a few examples in some developed countries. In this study, cooling system of deep sea water using heat exchangers of two hotels, located in near Haeundae Bay in Busan, have been analyzed on the quantity of electricity and gas use comparison between existing cooling system and deep seawater cooling system by using E-Quest simulation program. The results of the study showed that the Hotel A approximately saves 370 millions won per year, and the Hotel B saves 248 millions won per year. It means that the cooling system by using deep sea water has great worth to reduce the ratio of fuel sources.

Development and Application of an Economic Assessment Program of Cogeneration Systems (열병합시스템 경제성 평가 프로그램의 개발 및 적용에 관한 연구)

  • Park, Chasik;Kim, Yongchan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.11
    • /
    • pp.1547-1554
    • /
    • 1998
  • The object of this study was to develop an economic assessment program for the optimal design of the cogeneration systems composed of combining engine, generator, waste heat recovery exchanger, absorption chiller, and boiler, etc. The energy demand categorized by electric power, heating, cooling and water supply was determined by statistical data of the existing cogeneration systems. An economic assessment was performed by comparing the total cost of cogeneration system with that of non-cogeneration system. The total cost was evaluated by adding initial investment to operational cost considering efficiency of equipment, cost of equipment, fuel and electricity. To confirm the validity of the developed program, a hotel building with an area of $127,960m^2$ was selected, and the simulated results were compared with the measured data. The difference between the simulated and the measured values for the selected hotel building was approximately 12% for annual electric consumption.

Analysis of Economics through Control Method of Heat Source Equipment in Seasonal Air conditioning Building

  • Park, Yool;Kim, Samuel;Jung, Soon-Sung
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.11 no.4
    • /
    • pp.209-217
    • /
    • 2003
  • The term “energy saving is economical” is appropriate for the national view point and for design and assessment of one system, but not appropriate when choosing the system by comparing alternative systems in the early design step. Sometimes, non-energy saving system is more economical than energy saving system because of the price of electricity, gas or oil, which are used for operating the air conditioning system. Therefore, when designing a system, we should consider the efficient alternatives through economic assessment of energy saving method. However, research on non-operating number control of the system is not sufficient because it is more common to use operating number control of the system for most economic assessment of air conditioning systems. For this reason, this research can provide the economic operating number control method as basic design data. The data obtained through analysis of life cycle cost based on amount of yearly energy use, are produced by system simulation of HASP/ACLD/8501 and HASP/ACSS/8502 for six alternative heating$.$cooling systems based on seasonal air conditioning system, which is widely used for medium and large size office buildings in Busan.

ECONOMIC ASSESSMENT OF THE SOLAR-ENERGY SYSTEM USING LIFE CYCLE COST ANALYSIS

  • Chang-Yoon Ji;Dong-Won Jang;Taehoon Hong;Chang-Taek Hyun
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.669-675
    • /
    • 2009
  • As the use of new and renewable energy is one of the ways by which the exhaustion of fossil fuels and the other existing environmental problems can be addressed, a policy of spreading information regarding it and of conducting R&D related to it is currently being implemented in advanced countries. In the construction field, the concept of "green building" was born, and the application of this concept has increased, with the end in view of achieving energy savings, resource savings, and recycling, and of conserving the natural environment. In this context, the government of Korea amended the "Law on the Development, Use, and Promotion of New and Recycled Energy" in 2004, which contains 11 provisions related to new and renewable energy and their sources, including solar and geothermal energy as well as sunlight, water, rainfall, and organisms. Since solar-energy should be used instead of fossil fuels by converting sunlight directly into electricity, many researches on this subject are in progress. There are few researches, however, employing the economic approach to the subject. Thus, in this study, an economic assessment of the solar-energy system was conducted using both life cycle cost (LCC) analysis and sensitivity analysis. The results of the LCC analysis show that the solar-energy system will become economically better than the fossil fuel system after 16 years, although the initial construction cost of the solar-energy system is higher than that of the fossil fuel system. The results of this study are expected to be used in selecting an eco-friendly and economical solar-energy system when the construction of a green building is planned.

  • PDF

An Economic Analysis and Performance Prediction for a Ground Heat Pump System with Barrette Pile (Barrette 파일을 이용한 지열시스템의 채열 성능 예측 및 경제성 분석에 관한 연구)

  • Chae, Ho-Byung;Nam, Yujin;Park, Yong-Boo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.11
    • /
    • pp.600-605
    • /
    • 2013
  • Ground source heat pump systems (GSHP) can achieve higher performance of the system, by supplying more efficient heat source to the heat pump, than the conventional air-source heat pump system. But building clients and designers have hesitated to use GSHP systems, due to expensive initial cost, and uncertain economic feasibility. In order to reduce the initial cost, many researches have focused on the energy-pile system, using the structure of the building as a heat exchanger. Even though several experimental studies for the energy-pile system have been conducted, there was not enough data of quantitative evaluation with economic analysis and comprehensive analysis for the energy-pile. In this study, a prediction method has been developed for the energy pile system with barrette pile, using the ground heat transfer model and ground heat exchanger model. Moreover, a feasibility study for the energy pile system with barrette pile was conducted, by performance analysis and LCC assessment. As a result, it was found that the heat exchange rate of a barrette pile was 2.55 kW, and the payback period using LCC analysis was 8.8 years.