• Title/Summary/Keyword: Building Energy Assessment System

Search Result 131, Processing Time 0.032 seconds

A Study on the Analysis of Building Energy Rating considering the Region (지역에 따른 주거용 건물에너지효율등급 분석 연구)

  • Ahn, Byung-Lip;Kim, Chi-Hoon;Kim, Ji-Yeon;Jang, Cheol-Yong
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.5
    • /
    • pp.53-58
    • /
    • 2009
  • Entering in the time of high oil price, seriousness of an energy effect sector has given a huge impact and the importance of energy is growing. Especially, building energy occupying 24% of total demand of energy can be expected to reduce energy demand more than other section. To do this, the Building Energy Rating System is applied and implemented in Apartment houses on Jeju, South and Central region. This system calculates into energy saving rate, and certifies the building energy rating. This study evaluates the energy saving rate and rating and compares the difference in energy savings considering to each region and the thermal performance of the window. In result, the standard of the assessment house which is applied to the build energy rating system is demanded to distinguish the thermal performance of window according to regional variation.

A Study on the Evaluation of Building Energy Rating considering the Region of Apartment Houses (공동주택에서의 지역에 따른 건물에너지 효율등급 평가 연구)

  • Ahn, Byung-Lip;Kim, Chi-Hoon;Kim, Ji-Yeun;Jang, Cheol-Yong
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.15-20
    • /
    • 2009
  • Entering in the time of high oil price, seriousness of an energy effect sector has given a huge impact and the importance of energy is growing. Especially, building energy occupying 24% of total demand of energy can be expected to reduce energy demand more than other section. To do this, the Building Energy Rating System is applied and implemented in Apartment houses on Jeju, South and Central region. This system calculates into energy saving rate, and certifies the building energy rating. This study evaluates the energy saving rate and rating and compares the difference in energy savings considering to each region and the thermal performance of the window. In result, the standard of the assessment house which is applied to the build energy rating system is demanded to distinguish the thermal performance of window according to regional variation.

  • PDF

Analysis of Energy Performance and PMV Improvement by Application of Passive Factor for Office Building Renewal (오피스건물 리뉴얼시 패시브 요소적용에 따른 에너지성능 및 PMV 개선에 관한 연구)

  • Hong, Won-Pyo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.12
    • /
    • pp.55-64
    • /
    • 2014
  • This paper presents a case study to investigate the monthly calculation method of ISO 13790 applied for a office building. The energy performance analysis according to improvement of insulation and air permeability of windows in K office buildings is investigated by means of building energy efficiency rating tool ($ECO_2-OD$). The K building energy system is tested experimently by the measurement of PMV(predicted mean vote) for the control of indoor thermal environment and heat transmission coefficient of windows and interior walls respectively, before and after the example K office building is remodeled passively. Therefore, Internet based energy assessment program of energy efficiency rating of office building can be applied as a program for the annual energy requirement and for evaluation of energy savings from the experimental and simulation results.

Analyzing Weights of Certification Assessment Criteria on the G-SEED System Using the AHP Method -Focused on Certification Standards for Apartment Buildings- (계층분석법을 이용한 녹색건축 인증제도 평가항목의 중요도 분석 -공동주택 인증기준을 중심으로-)

  • Choi, Yeo Jin
    • KIEAE Journal
    • /
    • v.13 no.6
    • /
    • pp.113-120
    • /
    • 2013
  • Many countries over the world have taken many discussions and endeavors on environmental improvements of energy savings and greenhouse gas emission reductions for solving global climate change problems. In Korea, pre-considerations of environment-conscious factors in buildings have been taken to be critical with new constructions and renovation markets. In this situation, the Korean Green Building Certification(KGBC) system to induce the diffusion of sustainable buildings was introduced in 2002 and developed as an improved version of the G-SEED(Green Standard for Energy and Environmental Design) system in 2013 after major revisions. This research examines the importance of assessment criteria on apartment buildings to certify green buildings using the AHP(Analytic Hierarchy Process) method and suggests a new direction on certification assessment standards from the AHP result. In order to apply the AHP method, the survey via e-mail was conducted to design staffs in domestic architectural firms. As a result, assessment criteria such as ecological environment, indoor environment, and energy & environment pollution among 7 main ones proved to be important on assessing the G-SEED system for apartment buildings, while criteria such as land use & transportation, material & resource, water circulation management, maintenance management did relatively unimportant.

The Relationship between Energy Consumption and Factors Affecting Heating and Cooling

  • Park, Kwon Sook;Kim, Seiyong
    • Architectural research
    • /
    • v.19 no.1
    • /
    • pp.7-11
    • /
    • 2017
  • Energy consumption in university building has steadily increased over the last decade, and a strong upward trend in recent years. This study was undertaken to analyze the relationship between energy consumption and their affecting factors, six academic buildings were considered. The factors limited to heating and cooling, which is the main end use (nearly 60 per cent of total energy consumption in university buildings), encompassing system and operating schedules (user activity) and area use. To understand how to building is used, operated and managed, walk-through assessment was conducted as well as interview with university staff. The results show that the energy consumption of the humanities building was somewhat smaller than the consumption of the science and engineering building, and its range was from $31.26kgoe/m^2$ to $23.52kgoe/m^2$, depending on heating and cooling system and area use. And the energy consumption of the science and engineering building was related to operating schedules (user activity) as well as laboratory equipment characteristics. More analysis on a larger number of buildings is required in the future, including building form and material performance level to generalize the significant factors influencing building energy consumption.

A Comparison of Embodied Energy and Environmental Impacts between the Steel-Structured and Wall-typed Apartment Housing (철골조와 벽식조 공동주택의 환경영향 비교 연구)

  • 이강희
    • Journal of the Korean housing association
    • /
    • v.15 no.3
    • /
    • pp.83-91
    • /
    • 2004
  • In a planning stage, the assessment system is required to select the proper alternative, reflected the environmental affects such as energy, $CO_2$ and $SO_x$. Unit of energy consumption, $CO_2$ emission and $SO_x$ emission among various assessment systems could be effectively utilized to select the better alternative among various building types. But researches for these areas has not been conducted systematically, but limitedly and sporadically. In this paper, it aimed at providing the unit of energy consumption, $CO_2$ emission and $SO_x$ emission to evaluate the environmental affects between the steel-structured apartment building and wall-typed apartment building. For this, the input-output analysis could be utilized in the construction stage with two-type apartment housing. This approach can be utilized to compare the various alternatives in aspect of the energy consumption and the environment affect, and to select the relatively better alternative. This study found that the unit of energy, $CO_2$ and $SO_x$ of the steel-structured apartment building is lower than that of the wall-typed building

Study for Improvement of Domestic System through Regulation based on Comparison of Green Building Certification System Analysis - Focused on the G-SEED, BREEAM

  • Hyun, Eun-Mi;Kim, Yong-Sik
    • KIEAE Journal
    • /
    • v.15 no.1
    • /
    • pp.13-20
    • /
    • 2015
  • The main purpose of the green buildings by reducing energy consumption and carbon footprint of the building society, global as to ensure the sustainability of the building and the environment. These regulations and schemes are used to activate the green buildings were made on the basis of the relevant laws and regulations. Mainly in the research for the improvement of the domestic institutional assessment items, the analysis of the legislation was fundamentally focused on Scoring the incomplete state. The analysis based on the laws and regulations of the institution is the way to know the purpose and direction of the respective certification. This study was performed in the following order to target the new commercial buildings. First, the analysis of the geungeobeop G-SEED and BREEAM. Second, we analyze the content and method of building energy performance in the certification system. As a result, Green Building Act is broad in relation to the composition of the contents are building for the activation energy green building and EPI is dealt with in an abstract and presented the applicability of such documentary content of insulation and airtightness, efficient machine. In contrast, the UK has been directly limit the carbon footprint of buildings in the Building Regulations Part L and evaluate them in BREEAM. This analysis of the ways to reduce substantially the energy for domestic green building regulations should be addressed through the feed.

A Basic Study for Wind Energy of Building Cladding using Computational Fluid Dynamics (CFD를 이용하여 건물 외피의 바람에너지에 관한 적용연구)

  • Chung, Yung-Bea
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.39.2-39.2
    • /
    • 2011
  • The new and renewable energy today has a great interest in all countries around the world. In special it has need more limit of the fossil fuel that needs of low carbon emission among the social necessary conditions. Recently, the high-rise building demand the structural safety, the economic feasibility and the functional design. The high-rise building spends enormous energy and it satisfied the design in solving energy requirements. The requirements of energy for the building depends on the partly form wind energy due to the cladding of the building that came from the surroundings of the high-rise building. In this study of the wind energy, the cladding of the building was assessed a tentative study. The wind energy obtains from several small wind powers that came from the building or the surrounding of the building. In making a cladding the wind energy forms with wind pressure by means of energy transformation methods. The assessment for the building cladding was surrounded of wind speed and wind pressure that was carried out as a result of numerical simulation of wind environment and wind pressure which is coefficient around the high-rise building with the computational fluid dynamics. In case of the obtained wind energy from the pressure of the building cladding was estimated by the simulation of CFD of the building. The wind energy at this case was calculated by energy transform methods: the wind pressure coefficients were obtained from the simulated model for wind environment using CFD as follow. The concept for the factor of $E_f$ was suggested in this study. $$C_p=\frac{P_{surface}}{0.5{\rho}V^{2ref}}$$ $$E_c=C_p{\cdot}E_f$$ Where $C_p$ is wind pressure coefficient from CFD, $E_f$ means energy transformation parameter from the principle of the conservation of energy and $E_c$ means energy from the building cladding. The other wind energy that is $E_p$ was assessed by wind power on the building or building surroundings. In this case the small wind power system was carried out for wind energy on the place with the building and it was simulated by computational fluid dynamics. Therefore the total wind energy in the building was calculated as the follows. $$E=E_c+E_p$$ The energy transformation, which is $E_f$ will need more research and estimation for various wind situation of the building. It is necessary for the assessment to make a comparative study about the wind tunnel test or full scale test.

  • PDF

Correlation Analysis Between Fenestration Energy Consumption Efficiency Rating System and Building Energy Consumption (창호 에너지 소비 효율 등급제와 건물 에너지 소비의 상관관계 분석)

  • Kwak, Hee-Jeong;Jang, Hyang-In;Lee, Hyun-Soo;Eom, Jae-Yong;Suh, Seung-Jik
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.6
    • /
    • pp.338-345
    • /
    • 2013
  • The purpose of this study is to analyze the correlation between the 'Fenestration Energy Consumption Efficiency Rating System' (hereafter referred to as FECERS) and building energy consumption. 'EnergyPlus' was used for the calculation of energy consumption in apartments and office buildings, according to FECERS's rating and SHGC. The result indicates that the FECERS has high correlation with apartments, but has low correlation with office buildings. Also, it indicates that office buildings have a large impact from SHGC, which is not reflected in the FECERS. Consequently, the FECERS needs to be improved, by adding optical properties to assessment items. Additional study is required to establish the fenestration rating system, which, on the basis of this work, has high relevance to building energy consumption.

A Construction of the N-BMS Focused on the Building Service Equipment (N-BMS : National Building Management System) (건물 군관리시스템 구축방안)

  • Lee, Tae-Won;Kim, Yong-Ki;Kang, Sung-Ju
    • Proceedings of the SAREK Conference
    • /
    • 2007.11a
    • /
    • pp.149-154
    • /
    • 2007
  • Now, in Korea, the performances of the building service equipment relay on the individual superintendent's share for the assessment of performance, fault detection, deterioration diagnosis of the building service equipment. As the result, very different quality of the performance or the durability of equipment is being obtained with his skill and effort and it is also not easy to assess that quality. This finally lead to the waste of labor force and the operating cost due to the high-cost, low-efficiency system. How to construct the N-BMS was considered to save energy, resource and to conserve performance of building service equipment. The FEMIS, facility, energy/environmental management & information system, for building service offer management process integrated with BAS, FMS and EMS and so on.

  • PDF