• 제목/요약/키워드: Building Collapse risk

검색결과 54건 처리시간 0.028초

국내 지진재해도를 고려한 저층 필로티 건물의 붕괴 확률 (Collapse Probability of a Low-rise Piloti-type Building Considering Domestic Seismic Hazard)

  • 김대환;김태완;추유림
    • 한국지진공학회논문집
    • /
    • 제20권7_spc호
    • /
    • pp.485-494
    • /
    • 2016
  • The risk-based assessment, also called time-based assessment of structure is usually performed to provide seismic risk evaluation of a target structure for its entire life-cycle, e.g. 50 years. The prediction of collapse probability is the estimator in the risk-based assessment. While the risk-based assessment is the key in the performance-based earthquake engineering, its application is very limited because this evaluation method is very expensive in terms of simulation and computational efforts. So the evaluation database for many archetype structures usually serve as representative of the specific system. However, there is no such an assessment performed for building stocks in Korea. Consequently, the performance objective of current building code, KBC is not clear at least in a quantitative way. This shortcoming gives an unresolved issue to insurance industry, socio-economic impact, seismic safety policy in national and local governments. In this study, we evaluate the comprehensive seismic performance of an low-rise residential buildings with discontinuous structural walls, so called piloti-type structure which is commonly found in low-rise domestic building stocks. The collapse probability is obtained using the risk integral of a conditioned collapse capacity function and regression of current hazard curve. Based on this approach it is expected to provide a robust tool to seismic safety policy as well as seismic risk analysis such as Probable Maximum Loss (PML) commonly used in the insurance industry.

기상정보와 Adaboost 모델을 이용한 깎기비탈면 위험도 지도 개발 연구 (Research on the Production of Risk Maps on Cut Slope Using Weather Information and Adaboost Model)

  • 우용훈;김승현;김진욱;박광해
    • 지질공학
    • /
    • 제30권4호
    • /
    • pp.663-671
    • /
    • 2020
  • 최근 국내에서는 산림지역 뿐만 아니라 대도시지역에서도 자연재해가 많이 발생하고 있으며, 이에 대한 국가적인 요구사항은 증가하고 있다. 특히 국도 비탈면 붕괴에 대하여 체계적으로 관리할 수 있는 사전 재해정보 시스템은 전무한 실정이다. 본 연구에서는 CSMS(Cut Slope Management System)에서 관리하는 강원도와 경상도 지역의 국도 비탈면 붕괴 정밀조사 보고서와 비탈면 기초조사를 토대로 비탈면 붕괴 유발 인자에 대한 빅데이터 분석을 실시하였다. 분석 결과를 바탕으로 붕괴 비탈면 위치와 기상정보를 반영하여 분류 기반 머신러닝 모형인 Adaboost를 통한 비탈면 붕괴 위험도 예측모형을 구축하였다. 또한 시각화 프로그램인 비탈면 붕괴 위험도 시각화 지도를 개발하여 기상여건 변화에 따른 비탈면 위험도 파악을 통한 선제적 재해재난 예방대책에 활용할 수 있음을 보여주고 있다.

Design guides to resist progressive collapse for steel structures

  • Mirtaheri, M.;Zoghi, M. Abbasi
    • Steel and Composite Structures
    • /
    • 제20권2호
    • /
    • pp.357-378
    • /
    • 2016
  • The progressive collapse phenomenon in structures has been interested by civil engineers and the building standards organizations. This is particularly true for the tall and special buildings ever since local collapse of the Ronan Point tower in UK in 1968. When initial or secondary defects of main load carrying elements, overloads or unpredicted loads occur in the structure, a local collapse may be arise that could be distributed through entire structure and cause global collapse. One is not able to prevent the reason of failure as well as the prevention of propagation of the collapse. Also, one is not able to predict the start point of collapse. Therefore we should generalize design guides to whole or the part of structure based on the risk analysis and use of load carrying elements removal scenario. There are some new guides and criteria for elements and connections to be designed to resist progressive collapse. In this paper, codes and recommendations by various researchers are presented, classified and compared for steel structures. Two current design methods are described in this paper and some retrofitting methods are summarized. Finally a steel building with special moment resistant frame is analyzed as a case study based on two standards guidelines. This includes consideration of codes recommendations. It is shown that progressive collapse potential of the building depends on the removal scenario selection and type of analysis. Different results are obtained based on two guidelines.

지형공간정보체계에 의한 도시지역 재해위험도 평가 (Disasters Risk Assessment of Urban Areas by Geospatial Information Systems)

  • 유환희;김성삼;박기연;최우석
    • 대한공간정보학회지
    • /
    • 제13권3호
    • /
    • pp.41-52
    • /
    • 2005
  • 오늘날 도시지역은 인구밀집과 건축물의 고밀화로 인하여 자연재해나 인위적 재난이 발생할 경우 대형사고로 확산될 가능성이 매우 높다. 본 논문에서는 지형공간정보체계를 이용하여 도시지역의 종합적인 재해위험도를 평가하였으며, 이를 위해 도시지역 재해위험도를 침수위험도, 화재위험도, 건물붕괴위험도, 대피위험도 등 4가지로 세분하고 재해위험도를 평가하였다. 이러한 재해위험도 평가결과는 각종 도시관리계획을 수립할 때 재해를 최소화 시킬 수 있는 유효한 자료로 활용될 수 있다. 향 후 본 연구의 체계화와 전문성을 위하여 보다 많은 재해요소를 포함하고 관련분야의 전문가가 참여하는 공동연구 수행이 필요하다고 생각된다.

  • PDF

비연성 철근콘크리트 건물의 내진설계범주에 따른 붕괴 위험성 평가 (Seismic Collapse Risk for Non-Ductile Reinforced Concrete Buildings According to Seismic Design Categories)

  • 김민지;한상환;김태오
    • 한국지진공학회논문집
    • /
    • 제25권4호
    • /
    • pp.161-168
    • /
    • 2021
  • Existing old reinforced concrete buildings could be vulnerable to earthquakes because they were constructed without satisfying seismic design and detail requirements. In current seismic design standards, the target collapse probability for a given Maximum Considered Earthquake (MCE) ground-shaking hazard is defined as 10% for ordinary buildings. This study aims to estimate the collapse probabilities of a three-story, old, reinforced concrete building designed by only considering gravity loads. Four different seismic design categories (SDC), A, B, C, and D, are considered. This study reveals that the RC building located in the SDC A region satisfies the target collapse probability. However, buildings located in SDC B, C, and D regions do not meet the target collapse probability. Since the degree of exceedance of the target probability increases with an increase in the SDC level, it is imminent to retrofit non-ductile RC buildings similar to the model building. It can be confirmed that repair and reinforcement of old reinforced concrete buildings are required.

지진재해도를 고려한 철골 보통중심가새골조의 위험도기반 내진성능 (Risk-Targeted Seismic Performance of Steel Ordinary Concentrically Braced Frames Considering Seismic Hazard)

  • 신동현;홍석재;김형준
    • 한국전산구조공학회논문집
    • /
    • 제30권5호
    • /
    • pp.371-380
    • /
    • 2017
  • 미국의 내진설계기준인 ASCE/SEI 7-10은 구조물 붕괴성능에 대한 불확실성을 고려하지 않는 등재해도 기반 내진설계의 문제점을 해결하기 위해 위험도 기반 내진설계 개념을 도입하였다. 하지만 현행 국내 내진설계기준의 경우 한반도 내에서 발생한 큰 규모의 지진기록과 구조물의 붕괴성능과 관련된 연구의 부족으로 위험도 기반 내진설계 개념을 반영하지 않고 있다. 본 연구에서는 철골 보통중심가새골조를 표본건물로 선정하여 위험도 기반 내진성능평가를 수행하였다. 건물이 위치한 지역, 높이, 지반조건을 변수로 바탕으로 표본건물에 대한 붕괴성능 평가를 수행하였으며, 국내 지진기록의 특성을 반영할 수 있는 경험적 스펙트럴 형상 예측 모델을 활용하여 지진재해도 곡선을 작성하였다. 이를 활용하여 국내 주요 도시에 위치한 철골 보통중심가새골조의 붕괴확률을 위험도 적분 개념에 따라 평가하였다. 국내 주요 도시에 위치한 철골 보통중심가새골조의 붕괴확률을 평가한 결과, 현행 건축구조기준에 따라 설계된 표본건물은 본 연구에서 고려한 해석 변수에 따라 붕괴확률에 상당한 차이를 보였다. 특히 국내 건축구조기준의 경우 철골 보통중심가새골조에 대한 높이제한이 없어 일부 고층표본건물에서 목표 위험도인 50년간 1%의 붕괴확률을 초과하는 것으로 평가되었다.

Seismic collapse risk of RC frames with irregular distributed masonry infills

  • Li, Yan-Wen;Yam, Michael C.H.;Cao, Ke
    • Structural Engineering and Mechanics
    • /
    • 제76권3호
    • /
    • pp.421-433
    • /
    • 2020
  • Masonry infills are normally considered as non-structural elements in design practice, therefore, the interaction between the bounding frame and the strength contribution of masonry infills is commonly ignored in the seismic analysis work of the RC frames. However, a number of typical RC frames with irregular distributed masonry infills have suffered from undesirable weak-story failure in major earthquakes, which indicates that ignoring the influence of masonry infills may cause great seismic collapse risk of RC frames. This paper presented the investigation on the risk of seismic collapse of RC frames with irregularly distributed masonry infills through a large number of nonlinear time history analyses (NTHAs). Based on the results of NTHAs, seismic fragility curves were developed for RC frames with various distribution patterns of masonry infills. It was found that the existence of masonry infills generally reduces the collapse risk of the RC frames under both frequent happened and very strong earthquakes, however, the severe irregular distribution of masonry infills, such as open ground story scenario, results in great risk of forming a weak story failure. The strong-column weak-beam (SCWB) ratio has been widely adopted in major seismic design codes to control the potential of weak story failures, where a SCWB ratio value about 1.2 is generally accepted as the lower limit. In this study, the effect of SCWB ratio on inter-story drift distribution was also parametrically investigated. It showed that improving the SCWB ratio of the RC frames with irregularly distributed masonry infills can reduce inter-story drift concentration index under earthquakes, therefore, prevent weak story failures. To achieve the same drift concentration index limit of the bare RC frame with SCWB ratio of about 1.2, which is specified in ACI318-14, the SCWB ratio of masonry-infilled RC frames should be no less than 1.5. For the open ground story scenario, this value can be as high as 1.8.

빅데이터 기반의 잠재적 붕괴위험 노후건축물 도출 방법 및 서울특별시 적용 연구 (The Method for Analyzing Potentially Collapsible Aged Buildings Using Big Data and its Application to Seoul)

  • 임혜연;박철영;조성현;이강
    • 대한건축학회논문집:계획계
    • /
    • 제35권2호
    • /
    • pp.139-146
    • /
    • 2019
  • The purpose of this study is to derive an improved method for analyzing old buildings with risk of collapse using public big data. Previous studies on the risk of building collapse focused on internal factors such as building age and structural vulnerability. However, this study suggests a method to derive potentially collapsible buildings considering not only internal factors of buildings but also external factors such as nearby new construction data. Based on the big data analysis, this study develops a system to visualize vulnerable buildings that require safety diagnosis and proposed a future utilization plan.

건축물 안전관리 실태분석을 통한 중점안전관리 대상 및 요소 설정에 관한 연구 (A Study on the Critical Safety Management Buildings and factors by Analyzing the Actual State of Building Safety Management)

  • 김은희
    • 대한건축학회논문집:계획계
    • /
    • 제35권4호
    • /
    • pp.37-44
    • /
    • 2019
  • According to the statistical surveys and studies, insufficient maintenance in the use of existing buildings caused fire and collapse accidents. In this respect, I analyzed the data managed by the current building maintenance and inspection system to find out the actual state of safety management and proposed two significant results. First, regarding the state of the buildings, the safety management status of the small-sized ones, where 20 years or more passed after construction, is the worst and a priority improvement plan is required. Second, there are eight deeply concerning factors for the fire incidents and collapse accidents of buildings. In the order of high risk, these factors are structural strength (seismic design), exterior wall finishing material, basement floor, interior finishing materials, other evacuation facilities, corridors stairs entrances, rooftop, fire partition. We need to have more special designs and management plans regarding high-risk factors as a system to prevent accidents in the building.

Proposing a Method for Robustness Index Evaluation of the Structures Based on the Risk Analysis of Main Shock and Aftershock

  • Abdollahzadeh, Gholamreza;Faghihmaleki, Hadi
    • 국제강구조저널
    • /
    • 제18권5호
    • /
    • pp.1710-1722
    • /
    • 2018
  • Investigating remained damages from terrible earthquakes, it could be concluded that some events including explosion because of defect and failure in the building mechanical facilities or caused by gas leak, firing, aftershocks, etc., which are occurred during or a few time after the earthquake, will increase the effects of damages. In this paper, by introducing a complete risk analysis which included direct and indirect risks for earthquake (the main shock) and aftershock, the corresponding robustness index was created that called as "robustness index sequential critical events risk-based". One of the main properties of the intended robustness index is using progressive collapse percentage in its evaluation. Then, in a numerical example for a 4-storey moment resisting steel frame structure, a method is presented for obtaining all effective parameters in robustness index evaluation based on the intended risk and at last its results were reported.