• Title/Summary/Keyword: Building Codes

Search Result 474, Processing Time 0.021 seconds

Pushing the Boundaries of Mass Timber Construction and Building Codes

  • Dubois, Jean-Marc;Frappier, Julie;Gallagher, Simon;Structures, Nordic
    • International Journal of High-Rise Buildings
    • /
    • v.9 no.3
    • /
    • pp.261-271
    • /
    • 2020
  • The 2020 National Building Code of Canada (NBC) and the 2021 International Building Code (IBC) both include Tall Wood Buildings (TWB) and are hailed as documents responsible for the proliferation of Mass Timber construction. Mass Timber construction is critical to reducing the carbon footprint of the construction industry; a sector acknowledged as being one of the greatest contributors of global annual CO2 emissions. Origine, a 13-storey multi-residential building erected in 2017 in a previously unsuitable site, is currently the tallest all-wood building in North America. This article describes the challenges overcome by the designers and client as they engaged with code officials, building authorities, and fire-service representatives to demonstrate the life-safety performance of this innovative building. It also traces the development of the "Guide for Mass Timber Buildings of up to 12 Storeys" published in Quebec and how it has enabled other significant Tall Wood projects across North America.

Evaluation of moment amplification factors for RCMRFs designed based on Iranian national building code

  • Habibi, Alireza;Izadpanah, Mehdi;Rohani, Sina
    • Advances in concrete construction
    • /
    • v.9 no.1
    • /
    • pp.23-31
    • /
    • 2020
  • Geometric nonlinearity can significantly affect load-carrying capacity of slender columns. Dependence of structural stability on columns necessitates the consideration of second-order effects in the design process of columns, appropriately. On the whole, the design codes present a simplified procedure for second order analysis of slender columns. In this approximate method, the end moments of columns resulted from linear analysis (first-order) are multiplied by the recommended moment amplification factors of codes to achieve magnified moments of the second-order analysis. In the other approach, the equilibrium equations are directly solved for the deformed configuration of structure, so the resulting moments and deflections contain the influence of slenderness and increase more rapidly than do loads. The aim of this study is to evaluate the accuracy of moment amplification factors of Iranian national building code whose provisions are similar to the ACI requirement. Herein, finite element method is used to achieve magnified end moments of reinforced concrete moment resisting frames, and the outcomes are compared with the moments acquired based on the proposed approximate method by Iranian national building code. The results show that the approximate method of Iranian code for calculating magnified moments has significant errors for both unbraced and braced columns.

Design guides to resist progressive collapse for steel structures

  • Mirtaheri, M.;Zoghi, M. Abbasi
    • Steel and Composite Structures
    • /
    • v.20 no.2
    • /
    • pp.357-378
    • /
    • 2016
  • The progressive collapse phenomenon in structures has been interested by civil engineers and the building standards organizations. This is particularly true for the tall and special buildings ever since local collapse of the Ronan Point tower in UK in 1968. When initial or secondary defects of main load carrying elements, overloads or unpredicted loads occur in the structure, a local collapse may be arise that could be distributed through entire structure and cause global collapse. One is not able to prevent the reason of failure as well as the prevention of propagation of the collapse. Also, one is not able to predict the start point of collapse. Therefore we should generalize design guides to whole or the part of structure based on the risk analysis and use of load carrying elements removal scenario. There are some new guides and criteria for elements and connections to be designed to resist progressive collapse. In this paper, codes and recommendations by various researchers are presented, classified and compared for steel structures. Two current design methods are described in this paper and some retrofitting methods are summarized. Finally a steel building with special moment resistant frame is analyzed as a case study based on two standards guidelines. This includes consideration of codes recommendations. It is shown that progressive collapse potential of the building depends on the removal scenario selection and type of analysis. Different results are obtained based on two guidelines.

Identifying torsional eccentricity in buildings without performing detailed structural analysis

  • Tamizharasi, G.;Murty, C.V.R.
    • Earthquakes and Structures
    • /
    • v.23 no.3
    • /
    • pp.283-295
    • /
    • 2022
  • Seismic design codes permit the use of Equivalent Static Analysis of buildings considering torsional eccentricity e with dynamic amplification factors on structural eccentricity and some accidental eccentricity. Estimation of e in buildings is not addressed in codes. This paper presents a simple approximate method to estimate e in RC Moment Frame and RC Structural Wall buildings, which required no detailed structural analysis. The method is validated by 3D analysis (using commercial structural analysis software) of a spectrum of building. Results show that dynamic amplification factor should be applied on torsional eccentricity when performing Response Spectrum Analysis also. Also, irregular or mixed modes of oscillation arise in torsionally unsymmetrical buildings owing to poor geometric distribution of mass and stiffness in plan, which is captured by the mass participation ratio. These irregular modes can be avoided in buildings of any plan geometry by limiting the two critical parameters (normalised torsional eccentricity e/B and Natural Period Ratio 𝜏 =T𝜃/T, where B is building lateral dimension, T𝜃 uncoupled torsional natural period and T uncoupled translational natural period). Suggestions are made for new building code provisions.

A novel approach for the definition and detection of structural irregularity in reinforced concrete buildings

  • S.P. Akshara;M. Abdul Akbar;T.M. Madhavan Pillai;Renil Sabhadiya;Rakesh Pasunuti
    • Structural Monitoring and Maintenance
    • /
    • v.11 no.2
    • /
    • pp.101-126
    • /
    • 2024
  • To avoid irregularities in buildings, design codes worldwide have introduced detailed guidelines for their check and rectification. However, the criteria used to define and identify each of the plan and vertical irregularities are specific and may vary between codes of different countries, thus making their implementation difficult. This short communication paper proposes a novel approach for quantifying different types of structural irregularities using a common parameter named as unified identification factor, which is exclusively defined for the columns based on their axial loads and tributary areas. The calculation of the identification factor is demonstrated through the analysis of rectangular and circular reinforced concrete models using ETABS v18.0.2, which are further modified to generate plan irregular (torsional irregularity, cut-out in floor slab and non-parallel lateral force system) and vertical irregular (mass irregularity, vertical geometric irregularity and floating columns) models. The identification factor is calculated for all the columns of a building and the range within which the value lies is identified. The results indicate that the range will be very wide for an irregular building when compared to that with a regular configuration, thus implying a strong correlation of the identification factor with the structural irregularity. Further, the identification factor is compared for different columns within a floor and between floors for each building model. The findings suggest that the value will be abnormally high or low for a column in the vicinity of an irregularity. The proposed factor could thus be used in the preliminary structural design phase, so as to eliminate the complications that might arise due to the geometry of the structure when subjected to lateral loads. The unified approach could also be incorporated in future revisions of codes, as a replacement for the numerous criteria currently used for classifying different types of irregularities.

Shaking Table Test and Seismic Performance Evaluation of Shanghai Tower

  • Chunyu, Tian;Congzhen, Xiao;Hong, Zhang;Jinzhe, Cao
    • International Journal of High-Rise Buildings
    • /
    • v.1 no.3
    • /
    • pp.221-228
    • /
    • 2012
  • Shanghai Tower is a super high-rise building of 632 m height with 'mega frame-core- outrigger truss' structure system. Due to the complexity and irregularity of structure, shaking table test was carried out to investigate its seismic performance. A 1/40 scaled test model was designed, built and tested on shaking table under earthquake of small, moderate and large levels. The experimental results showed that the structure can meet the requirements of Chinese codes and reach scheduled performance objectives. Elastic and plastic time-history analysis on the structure were carried out and the results were compared to experimental results. Based on the research results some suggestions were proposed to contribute favorable effect on the seismic capacity of the structure.

A study on the Improvement Plans for Green Building Certification System -focused on the school use classification- (녹색건축물인증제도 개선방향에 관한 연구 -학교시설 용도구분 개선을 중심으로-)

  • Lee, Jae Ok;Meang, Joon Ho;Lee, Sang Min;Lee, Seung Min
    • The Journal of Sustainable Design and Educational Environment Research
    • /
    • v.11 no.2
    • /
    • pp.28-37
    • /
    • 2012
  • The purpose of this study is to suggest improvement plans of School Green Building Certification System by comparing items of domestic system with those of foreign system. Especially, we focused on school use classification. Use classification of Green Building Certification System must be based on Building Codes and reflect the nature of building use and size. Schools are divided into three groups ; preschool, school(elementary, junior high school, high school), university and ect. Also they must be set up assessment method reflecting the nature of school use and size.

DESIGN AND USE OF BUILDING INFORMATION MODELS FOR PREPLANNING COMMERCIAL BUILDING CONSTRUCTION ACTIVITIES

  • Thomas M. Korman
    • International conference on construction engineering and project management
    • /
    • 2013.01a
    • /
    • pp.274-278
    • /
    • 2013
  • Over the past several years, the building codes that govern commercial building construction have become increasingly prescriptive in nature, specifying detailed information related to the design and installation of the systems, while offering no reasoning behind their prescriptive measures. For example, metal stud framing is commonly used in commercial building construction to create bearing walls and non-bearing partition walls. BIM provides a powerful platform for developing and implementing "pre-planning" tools and methods to facilitate both engineering and administrative controls during construction. This paper discusses the use of BIM to enhance constructability for commercial building construction activities, specifically metal stud framing. Using specific real-world examples this paper demonstrates ways that BIM can be used to foresee potential construction issues and motivates and informs future uses of BIM technologies

  • PDF

Efficient Problem-Solving Idea Generation in the Design Phase VE of Construction Projects using Business Creativity Codes(BCC) (건설 설계VE의 효율적 문제해결 아이디어 도출을 위한 비즈니스 창의성 코드(BCC) 활용방안)

  • Kim, Huy-Qyou;Park, Young-Taek
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.4
    • /
    • pp.367-379
    • /
    • 2016
  • Although the importance of creative thinking is rapidly increasing in the new century, the generation of creative ideas and its application in the construction industry have been considered relatively difficult. Thus there have been a few studies on the subject that how to apply creative thinking tools with empirical evidence in the construction industry. Value engineering(VE) has been widely applied in the design phase of construction projects due to the government regulation, Brainstorming has been the most prevalent idea generation techniques in the VE activities during the past several decades. Contrary to popular belief, the performance of brainstorming is not so good. It is known as the brainstorming myth. This paper proposes the business creativity codes(BCC) as an alternative idea generation tool in the design phase VE of construction projects. In order to examine the effectiveness of the BCC, 50 successful field cases awarded in the design VE competition of government agency are used. The result shows that the BCC can be used as an effective idea generation tool in the design phase VE construction projects.