• Title/Summary/Keyword: Building Automation

Search Result 494, Processing Time 0.021 seconds

A Study on the Development of AI-Based Fire Fighting Facility Design Technology through Image Recognition (이미지 인식을 통한 AI 기반 소방 시설 설계 기술 개발에 관한 연구)

  • Gi-Tae Nam;Seo-Ki Jun;Doo-Chan Choi
    • Journal of the Society of Disaster Information
    • /
    • v.18 no.4
    • /
    • pp.883-890
    • /
    • 2022
  • Purpose: Currently, in the case of domestic fire fighting facility design, it is difficult to secure highquality manpower due to low design costs and overheated competition between companies, so there is a limit to improving the fire safety performance of buildings. Accordingly, AI-based firefighting design solutions were studied to solve these problems and secure leading fire engineering technologies. Method: Through AutoCAD, which is widely used in existing fire fighting design, the procedures required for basic design and implementation design were processed, and AI technology was utilized through the YOLO v4 object recognition deep learning model. Result: Through the design process for fire fighting facilities, the facility was determined and the drawing design automation was carried out. In addition, by learning images of doors and pillars, artificial intelligence recognized the part and implemented the function of selecting boundary areas and installing piping and fire fighting facilities. Conclusion: Based on artificial intelligence technology, it was confirmed that human and material resources could be reduced when creating basic and implementation design drawings for building fire protection facilities, and technology was secured in artificial intelligence-based fire fighting design through prior technology development.

Prototyping a BIM-enabled Design Tool for the Auto-arrangement of Interior Design Panels - Based on the Pattern Extraction of Bitmap Image Pixels and its Representation - (BIM기반 설계를 지원하는 인테리어 패널 자동배치 도구 프로토타입 구현 - 비트맵 이미지 픽셀 패턴의 추출과 패널 표현을 중심으로 -)

  • Huang, JinHua;Kim, HaYan;Lee, Jin-Kook
    • Design Convergence Study
    • /
    • v.15 no.5
    • /
    • pp.71-83
    • /
    • 2016
  • Interior panels are usually used in finishing of interior walls for not only decorative effects but also information transfer. According to designer's design placing interior panels may need repetitive tasks and the emphasis of this paper is to support an automation of these tasks. Considering the utilization characteristics of interior panels, we propose three method to present patterns by using bitmap image pixels and interior panels' shape changes, based on the theoretical consideration. In addition, in order to approve the possibility of the proposed methods, we have implemented the BIM based interior panels auto layout tool which applied one of the three methods to present patterns by using bitmap image pixel values and panel identification attributes. This tool also supports auto generation of quantity and panel arrangement sequence information that will be used in future construction phase. We expect that this approach will also be used in other decorative objects which require repetition of the basic units, such as floor tiles.

Development of Web-based Construction-Site-Safety-Management Platform Using Artificial Intelligence (인공지능을 이용한 웹기반 건축현장 안전관리 플랫폼 개발)

  • Siuk Kim;Eunseok Kim;Cheekyeong Kim
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.37 no.2
    • /
    • pp.77-84
    • /
    • 2024
  • In the fourth industrial-revolution era, the construction industry is transitioning from traditional methods to digital processes. This shift has been challenging owing to the industry's employment of diverse processes and extensive human resources, leading to a gradual adoption of digital technologies through trial and error. One critical area of focus is the safety management at construction sites, which is undergoing significant research and efforts towards digitization and automation. Despite these initiatives, recent statistics indicate a persistent occurrence of accidents and fatalities in construction sites. To address this issue, this study utilizes large-scale language-model artificial intelligence to analyze big data from a construction safety-management information network. The findings are integrated into on-site models, which incorporate real-time updates from detailed design models and are enriched with location information and spatial characteristics, for enhanced safety management. This research aims to develop a big-data-driven safety-management platform to bolster facility and worker safety by digitizing construction-site safety data. This platform can help prevent construction accidents and provide effective education for safety practices.

A Study on Predicting the Logistics Demand of Inland Ports on the Yangtze River (장강 내수로 항만의 물류 수요 예측에 관한 연구)

  • Zhen Wu;Hyun-Chung Kim
    • Korea Trade Review
    • /
    • v.48 no.3
    • /
    • pp.217-242
    • /
    • 2023
  • This study aims to analyze the factors influencing the logistics demand of inland ports along the Yangtze River and predict future port logistics demand based on these factors. The logistics demand prediction using system dynamics techniques was conducted for a total of six ports, including Chongqing and Yibin ports in the upper reaches, Jingzhou and Wuhan ports in the middle reaches, and Nanjing and Suzhou ports in the lower reaches of the Yangtze River. The logistics demand for all ports showed an increasing trend in the mid-term prediction until 2026. The logistics demand of Chongqing port was mainly influenced by the scale of the hinterland economy, while Yibin port appeared to heavily rely on the level of port automation. In the case of the upper and middle reach ports, logistics demand increased as the energy consumption of the hinterland increased and the air pollution situation worsened. The logistics demand of the middle reach ports was greatly influenced by the hinterland infrastructure, while the lower reach ports were sensitive to changes in the urban construction area. According to the sensitivity analysis, the logistics demand of ports relying on large cities was relatively stable against the increase and decrease of influential factors, while ports with smaller hinterland city scales reacted sensitively to changes in influential factors. Therefore, a strategy should be established to strengthen policy support for Chongqing port as the core port of the upper Yangtze River and have surrounding ports play a supporting role for Chongqing port. The upper reach ports need to play a supporting role for Chongqing port and consider measures to enhance connections with middle and lower reach ports and promote the port industry. The development strategy for inland ports along the Yangtze River suggests the establishment of direct routes and expansion of the transportation network for South Korean ports and stakeholders. It can suggest expanding the hinterland network and building an efficient transportation system linked with the logistics hub. Through cooperation, logistics efficiency can be enhanced in both regions, which will contribute to strengthening the international position and competitiveness of each port.