• Title/Summary/Keyword: Building Automation

Search Result 494, Processing Time 0.026 seconds

The Practical Application of Modular Construction for Residential Facilities (주거시설로서 모듈러건축 활용화 방안)

  • Kim, Ji-Hyeon;Park, Il-Min
    • Journal of the Korean housing association
    • /
    • v.24 no.3
    • /
    • pp.19-26
    • /
    • 2013
  • The purpose of this research is to provide basic data for the promotion strategy to activate modular construction system as residential facilities, through a study on the architectural planning, institutions and policies and research on connection details, for the use as residential facilities of the modular construction that is not actively supplied for the general residential facilities. As a result, I suggest sample model plan of domestic and foreign case analysis and characteristic of modular construction and practical application of modular construction for Residential Facilities. Owing to many advantages including short construction period structural stability and economic benefits, modular construction is expected to play a role as residential alternative of socially controversial affordable housing and weekend homes, and potential housing shortage after reunification; and to contribute to the development of design automation and industrialized constructions. Though Korea is still lacking development of the system that meets the domestic context, if supported by ongoing researches on the development of construction methods, materials and details, the settlement of appropriate modular residential facilities to suit the national situation will serve a possible alternative solution for many housing and environmental problems.

"MODEL SPELL CHECKER" FOR PRIMITIVE-BASED AS-BUILT MODELING IN CONSTRUCTION

  • Kwon Soon-Wook;Frederic Bosche;Huh Youngki
    • Korean Journal of Construction Engineering and Management
    • /
    • v.5 no.5 s.21
    • /
    • pp.163-171
    • /
    • 2004
  • This research investigates a Modeling Spell Checker that, similarly to Word Spell Checker for word processing software, would conform as-built 3D models to standard construction rules. The work is focused on the study of pipe-spools. Specifically pipe diameters and coplanarity are checked and corrected by the Modeling Spell Checker, and elbows are deduced and modeled to complete models. Experiments have been conducted by scanning scenes of increasing levels of complexity regarding the number of pipes, the types of elbows and the number of planes constituting pipe-spools. For building models of pipes from sensed data, a modeling method, developed at the University of Texas at Austin, that is based on the acquisition of sparse point clouds and the human ability to recognize geometric shapes has been used Results show that primitive-based models obtained after scanning construction sites can be corrected and even improved automatically, and, since such models are expected to be used as feedback control models for equipment operators, the higher modeling accuracy achieved with the Modeling Spell Checker could potentially increase the level of safety in construction. Result also show that some improvements are still needed especially regarding the co-planarity of pipes. In addition, results show that the modeling accuracy significantly depends on the primitive modeling method, and improvement of that method would positively impact the modeling spell checker.

A Study on Signal Processing Method for Welding Current in Automatic Weld Seam Tracking System (용접선 자동추적시 용접전류 신호처리 기법에 관한 연구)

  • 문형순;나석주
    • Journal of Welding and Joining
    • /
    • v.16 no.3
    • /
    • pp.102-110
    • /
    • 1998
  • The horizontal fillet welding is prevalently used in heavy and ship building industries to fabricate the large scale structures. A deep understanding of the horizontal fillet welding process is restricted, because the phenomena occurring in welding are very complex and highly non-linear characteristics. To achieve the satisfactory weld bead geometry in robot welding system, the seam tracking algorithm should be reliable. The number of seam tracker was developed for arc welding automation by now. Among these seam tracker, the arc sensor is prevalently used in industrial robot welding system because of its low cost and flexibility. However, the accuracy of arc sensor would be decreased due to the electrical noise and metal transfer. In this study, the signal processing algorithm based on the neural network was implemented to enhance the reliability of measured welding current signals. Moreover, the seam tracking algorithm in conjunction with the signal processing algorithm was implemented to trace the center of weld line. It was revealed that the neural network could be effectively used to predict the welding current signal at the end of weaving.

  • PDF

An Efficient Complex Event Processing Algorithm based on Multipattern Sharing for Massive Manufacturing Event Streams

  • Wang, Jianhua;Lan, Yubin;Lu, Shilei;Cheng, Lianglun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.3
    • /
    • pp.1385-1402
    • /
    • 2019
  • Quickly picking up some valuable information from massive manufacturing event stream usually faces with the problem of long detection time, high memory consumption and low detection efficiency due to its stream characteristics of large volume, high velocity, many variety and small value. Aiming to solve the problem above for the current complex event processing methods because of not sharing detection during the detecting process for massive manufacturing event streams, an efficient complex event processing method based on multipattern sharing is presented in this paper. The achievement of this paper lies that a multipattern sharing technology is successfully used to realize the quick detection of complex event for massive manufacturing event streams. Specially, in our scheme, we firstly use pattern sharing technology to merge all the same prefix, suffix, or subpattern that existed in single pattern complex event detection models into a multiple pattern complex event detection model, then we use the new detection model to realize the quick detection for complex events from massive manufacturing event streams, as a result, our scheme can effectively solve the problems above by reducing lots of redundant building, storing, searching and calculating operations with pattern sharing technology. At the end of this paper, we use some simulation experiments to prove that our proposed multiple pattern processing scheme outperforms some general processing methods in current as a whole.

Building a Dynamic Analyzer for CUDA based System.

  • SALAH T. ALSHAMMARI
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.8
    • /
    • pp.77-84
    • /
    • 2023
  • The utilization of GPUs on general-purpose computers is currently on the rise due to the increase in its programmability and performance requirements. The utility of tools like NVIDIA's CUDA have been designed to allow programmers to code algorithms by using C-like language for the execution process on the graphics processing units GPU. Unfortunately, many of the performance and correctness bugs will happen on parallel programs. The CUDA tool support for the parallel programs has not yet been actualized. The use of a dynamic analyzer to find performance and correctness bugs in CUDA programs facilitates the execution of sophisticated processes, especially in modern computing requirements. Any race conditions bug it will impact of program correctness and the share memory bank conflicts to improve the overall performance. The technique instruments the programs in a way that promotes accessibility of the memory locations accessed by different threads well as to check for any bugs in the code of a program. The instrumented source code will be used initiated directly in the device emulation code of CUDA to send report for the user about all errors. The current degree of automation helps programmers solve subtle bugs in highly complex programs or programs that cannot be analyzed manually.

Ontology based Integrated Construction Information Management for Modernized Traditional Housing (Hanok)

  • Lee, Heewoo;Lee, Yunsub;Jin, Zhenhui;Gebremichael, Dagem Derese;Jung, Youngsoo
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.162-169
    • /
    • 2022
  • In an attempt to disseminate modernized Korean traditional housing (Hanok), a ten-year research project was initiated in 2010 by the Korean Government to reduce the construction cost, improve the facility performance, and automate the Hanok construction industry. To meet these objectives, various research areas, including public policies, planning methods, design standards, new building materials, construction standards, maintenance procedures, advanced project management tools, and integrated IT applications have been developed. In addition, comprehensive technologies developed were applied to the ten pilot Hanok buildings to validate the real-world performance as part of the research project. To further facilitate the digital transformation of the Hanok industry by using the research results, it is required to disseminate the developed technologies in an automated and standardized manner. In particular, it is crucial to systematize and manage the interoperability of various technical data and accumulated historical data for different business functions, especially within the highly fragmented industry. In this context, this paper proposes an ontology-based Hanok information dissemination platform to enable industry-wide automated knowledge and information sharing. The system architecture, standardized historical database, and advanced analytics based on ontology web language (OWL) for the Hanok industrialization platform are introduced.

  • PDF

A Case Study of Educational Content using Arduino based on Augmented Reality

  • Soyoung Kim;Heesun Kim
    • International journal of advanced smart convergence
    • /
    • v.12 no.4
    • /
    • pp.268-276
    • /
    • 2023
  • The representative branch of ICT education is Arduino. However, there are various problems when teaching using Arduino. Arduino requires a complex understanding of hardware and software, and this can be perceived as a difficult course, especially for beginners who are not familiar with programming or electronics. Additionally, the process of connecting the pins of the Arduino board and components must be accurate, and even small mistakes can lead to project failure, which can reduce the learner's concentration and interest in learning Arduino. Existing Arduino learning content consists of text and images in 2D format, which has limitations in increasing student understanding and immersion. Therefore, in this paper analyzes the necessary conditions for sprouting 'growing kidney beans' in the first semester of the fourth grade of elementary school, and builds an automated experimental environment using Arduino. Augmented reality of the pin connection process was designed and produced to solve the difficulties when building an automation system using Arduino. After 3D modeling Arduino and components using 3D Max, animation was set, and augmented reality (AR) content was produced using Unity to provide learners with more intuitive and immersive learning content when learning Arduino. Augmented reality (AR)-based Arduino learning content production is expected to increase educational effects by improving the understanding and immersion of classes in ICT education using Arduino and inducing fun and interest in physical computing coding education.

Design of Vehicle-mounted Loading and Unloading Equipment and Autonomous Control Method using Deep Learning Object Detection (차량 탑재형 상·하역 장비의 설계와 딥러닝 객체 인식을 이용한 자동제어 방법)

  • Soon-Kyo Lee;Sunmok Kim;Hyowon Woo;Suk Lee;Ki-Baek Lee
    • The Journal of Korea Robotics Society
    • /
    • v.19 no.1
    • /
    • pp.79-91
    • /
    • 2024
  • Large warehouses are building automation systems to increase efficiency. However, small warehouses, military bases, and local stores are unable to introduce automated logistics systems due to lack of space and budget, and are handling tasks manually, failing to improve efficiency. To solve this problem, this study designed small loading and unloading equipment that can be mounted on transportation vehicles. The equipment can be controlled remotely and is automatically controlled from the point where pallets loaded with cargo are visible using real-time video from an attached camera. Cargo recognition and control command generation for automatic control are achieved through a newly designed deep learning model. This model is designed to be optimized for loading and unloading equipment and mission environments based on the YOLOv3 structure. The trained model recognized 10 types of palettes with different shapes and colors with an average accuracy of 100% and estimated the state with an accuracy of 99.47%. In addition, control commands were created to insert forks into pallets without failure in 14 scenarios assuming actual loading and unloading situations.

Optimizing shallow foundation design: A machine learning approach for bearing capacity estimation over cavities

  • Kumar Shubham;Subhadeep Metya;Abdhesh Kumar Sinha
    • Geomechanics and Engineering
    • /
    • v.37 no.6
    • /
    • pp.629-641
    • /
    • 2024
  • The presence of excavations or cavities beneath the foundations of a building can have a significant impact on their stability and cause extensive damage. Traditional methods for calculating the bearing capacity and subsidence of foundations over cavities can be complex and time-consuming, particularly when dealing with conditions that vary. In such situations, machine learning (ML) and deep learning (DL) techniques provide effective alternatives. This study concentrates on constructing a prediction model based on the performance of ML and DL algorithms that can be applied in real-world settings. The efficacy of eight algorithms, including Regression Analysis, k-Nearest Neighbor, Decision Tree, Random Forest, Multivariate Regression Spline, Artificial Neural Network, and Deep Neural Network, was evaluated. Using a Python-assisted automation technique integrated with the PLAXIS 2D platform, a dataset containing 272 cases with eight input parameters and one target variable was generated. In general, the DL model performed better than the ML models, and all models, except the regression models, attained outstanding results with an R2 greater than 0.90. These models can also be used as surrogate models in reliability analysis to evaluate failure risks and probabilities.

IoT Open-Source and AI based Automatic Door Lock Access Control Solution

  • Yoon, Sung Hoon;Lee, Kil Soo;Cha, Jae Sang;Mariappan, Vinayagam;Young, Ko Eun;Woo, Deok Gun;Kim, Jeong Uk
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.12 no.2
    • /
    • pp.8-14
    • /
    • 2020
  • Recently, there was an increasing demand for an integrated access control system which is capable of user recognition, door control, and facility operations control for smart buildings automation. The market available door lock access control solutions need to be improved from the current level security of door locks operations where security is compromised when a password or digital keys are exposed to the strangers. At present, the access control system solution providers focusing on developing an automatic access control system using (RF) based technologies like bluetooth, WiFi, etc. All the existing automatic door access control technologies required an additional hardware interface and always vulnerable security threads. This paper proposes the user identification and authentication solution for automatic door lock control operations using camera based visible light communication (VLC) technology. This proposed approach use the cameras installed in building facility, user smart devices and IoT open source controller based LED light sensors installed in buildings infrastructure. The building facility installed IoT LED light sensors transmit the authorized user and facility information color grid code and the smart device camera decode the user informations and verify with stored user information then indicate the authentication status to the user and send authentication acknowledgement to facility door lock integrated camera to control the door lock operations. The camera based VLC receiver uses the artificial intelligence (AI) methods to decode VLC data to improve the VLC performance. This paper implements the testbed model using IoT open-source based LED light sensor with CCTV camera and user smartphone devices. The experiment results are verified with custom made convolutional neural network (CNN) based AI techniques for VLC deciding method on smart devices and PC based CCTV monitoring solutions. The archived experiment results confirm that proposed door access control solution is effective and robust for automatic door access control.