• Title/Summary/Keyword: Building Applied Photovoltaics

Search Result 10, Processing Time 0.039 seconds

A Study on the Development of Roof Integrated PV Module (Focused on the Prefab Building System) (지붕재 일체형 태양전지 모듈의 개발에 따른 내구성 평가 (조립식 건축시스템을 중심으로))

  • Yi, So-Mi;Noh, Ji-Hee;Lee, Eung-Jik
    • KIEAE Journal
    • /
    • v.6 no.4
    • /
    • pp.17-24
    • /
    • 2006
  • The application of photovoltaics into building as integrated building components has been paid more attention worldwide. Photovoltaics or solar electric modules are solid state devices, directly converting solar radiation into electricity; the process does not require fuel and any moving parts, and produce no pollutants. And the prefab building method is very effective because the pre- manufactured building components is simply assembled to making up buildings in the construction fields especially the sandwich panel. Architecture considerations for the integration of PV module to building envelope such as building structure, construction type, safety, regulation, maintenance etc. have been carefully refelected from the early stage of BIPV module design. Trial product of BIPV module are manufactured and sample construction details for demonstration building are purposed. Therefore, this paper intends to advanced its practical use by proposing how to get integrated PV system which can be applied to prefab building material, and how to apply it.

Efficiency Improvement for Building Integrated Photovoltaic Applied to High-rise Building (고층 빌딩에 적용되는 빌딩통합형 태양광패널 효율성 개선방안)

  • Lee, Do-Hyun;Ahn, Ihn-Seok
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.1
    • /
    • pp.71-78
    • /
    • 2022
  • With the advent of cutting-edge technology, renewable energy is significantly considered as alternative resources to supply electric power. However, many barriers such as energy intermittency, high initial installation cost, and low-efficiency generation challenged building new infrastructure with clean energy. Efforts reducing greenhouse gas emissions and reliance on fossil fuels resulted in the decentralization of power generation like distributed energy resource (DER). This paper is to introduce and evaluate the feasibility of building-integrated photovoltaics (BIPV) in a high-rise building in Ulsan. To optimize BIPV, a variety of methods to minimize efficiency decrease and maximize electric power generation after installing BIPV on the building's facade are suggested. The variables causing power losses are analyzed. By utilizing System Advisor Model (SAM), actual power generated from solar panels is measured by Thin-film PV, Mono-crystalline PV, and Poly-crystalline PV.

Self-powered Smart Window Technologies Using Photovoltaics (태양전지를 이용한 스마트 윈도우 기술 동향)

  • Lee, Kyu-Sung;Lim, Jung Wook;Kang, Mangu;Kim, Kyung Hyun;Ryu, Hojun
    • Electronics and Telecommunications Trends
    • /
    • v.34 no.5
    • /
    • pp.36-47
    • /
    • 2019
  • Smart window technology has become a major component of smart buildings, leading to energy savings and enhanced functionality. Smart windows work like curtains or blind screens, blocking external light sources. Smart window components employ electrochromic or photochromic materials that can selectively block sunlight when electricity is applied. The installation of low-E glass and building-integrated photovoltaics (BIPV) is being encouraged in accordance with the policy on saving building energy. To incorporate BIPV into smart windows, the transparency and colors of transparent photovoltaics must be optimized. The power sources required to operate these smart windows take advantage of the transparent color of the solar cells, which also facilitates aesthetics. Self-powered smart windows that combine electrochromic or photochromic screens with transparent solar cells suggest a promising convergent technology.

Installation and Operating with Photovoltaic System of Sunshade Type (차양형 태양광발전시스템의 설치 및 운영에 관한 연구)

  • Lee, So-Mi;Shim, Hun;Lee, Yong-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.136-141
    • /
    • 2005
  • The application of photovoltaics into building as integrated building components has been paid more attention worldwide. Photovoltaics or solar electric modules are solid state devices, directly converting solar radiation into electricity; the process does not require fuel and any moving parts, and produce no pollutants. So, the purpose of this research is to present how to get PVIB which can be applied building facade and how to apply it. From the basis of these results this study will intend to develop an integrated for optimal design of PV System.

  • PDF

Parametric Analysis of Building Energy Impact of Semi-transparent PV (STPV의 건물 에너지 성능에 대한 파라메트릭 분석)

  • Kwak, In-Kyu;Mun, Sun-Hye;Huh, Jung-Ho
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.7
    • /
    • pp.35-42
    • /
    • 2018
  • Semi-transparent Photovoltaics (STPV) works as an exterior material replacing windows as well as functioning as a electricity generator. As a result, it also affects the building's heating, cooling and lighting loads. In this study, we used the concept of Net Electricity Benefit(NEB) to conduct a parametric analysis of building energy impact of STPV. The NEB of STPV is from $-1kWh/m^2$ to $6kWh/m^2$. Since NEB represents the amount of energy increase or decrease when STPV is applied compared to the standard window, a value of 0 or less means that the demand for building energy can be increased rather than applying a general window having high thermal performance and high visible light transmittance value. Therefore, it is necessary to perform a comprehensive performance evaluation considering both the performance evaluation based on the existing power generation performance and the influence on the building energy.

Fabrication of High-power Shingled PV Modules Integrated with Bent Steel Plates for the Roof (절곡 강판 일체형 고출력 슁글드 태양광 모듈 제조)

  • Eunbi Lee;Min-Joon Park;Minseob Kim;Jinho Shin;Sungmin Youn
    • Current Photovoltaic Research
    • /
    • v.11 no.2
    • /
    • pp.54-57
    • /
    • 2023
  • Recently, requirements for improving the convenience of constructing BIPV (Building Integrated Photo Voltaic) modules had increased. To solve this problem, we fabricated shingled PV modules integrated with bent steel plates for building integrated photovoltaics. These PV modules could be constructed directly on the roof without the installation structure. We found optimal lamination conditions with supporting structures to fabricate a module on a bent steel plate. Moreover, we applied a shingled design to PV modules integrated with bent steel plates to achieve a high electrical output power. The shingled module with bent steel plates shows 142.80 W of solar-to-power conversion in 0.785 m2 area.

An analysis of Classification and Characteristics of PV Modules Applied into Building Roof (PV모듈의 지붕 적용 유형 분류 및 특성 분석)

  • Moon, Jong-Hyeok;Kim, Jin-Hee;Kim, Yong-Jae;Kim, Jun-Tae
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.251-258
    • /
    • 2009
  • Building-Integrated Photovoltaics (BIPV) is a photovoltaic (PV) technology which can be incorporated into the roofs walls of both commercial and domestic buildings to provide a source of electricity. BIPV systems can operate as a multi-functional building components, which generates electricity and serves as part of building envelope. It can be regarded as a new architectural elements, adding to the building's aesthetics. Applying PV modules on roof has an advantage over wall applications as they seem to receive more solar radiation on PV modules. There are various types of PV applications on building roofs: attached, on-top and integrated. This paper describes the classification and characteristics of PV applications on roofs.

  • PDF

A Case Study on the Islanding Detection Protection of PV System and ESS System (태양광 발전과 ESS 시스템의 연계운전시 단독운전 방지 사례 연구)

  • Lim, Jong Rok;Hwang, Hye-Mi;Shin, Woo Gyun;Ju, Young-Chul;Jung, Young Seok;Kang, Gi-Hwan;Ko, Suk-Whan
    • Journal of the Korean Solar Energy Society
    • /
    • v.39 no.1
    • /
    • pp.59-66
    • /
    • 2019
  • BIPV or BAPV installation applied to building is increasing through public utility mandates enterprise. Solar PV energy generates only during the day, but if it is operated in convergence with ESS, which stores electrical energy, it can restrain the fossil energy used in buildings throughout the day. A solution is to converge with PV system and ESS. However, PV systems and ESS connected to the power grid in parallel can cause problems of electrical stability. A study was conducted on the case of failure to detect islanding operation under the parallel operation of PV generation and ESS that are connected in parallel to power grid. Experiments conducted various non-islanding detections under the operating conditions. In the experiment results, when one PCS - PV inverter or ESS inverter - was operating under the islanding condition, it stopped working within 0.5 seconds of the Korean grid standard. However, when both of PV inverter and ESS inverter were operating at the same time under the islanding situation, the anti-islanding algorithm did not operate normally and both inverters continuously supplied power to the connected RLC loads. islanding detection Algorithm developed by each inverter manufacturer has caused this phenomenon. Therefore, this paper presented a new test standard for islanding detection.

Fabrication of Lightweight Flexible c-Si Shingled Photovoltaic Modules for Building-Applied Photovoltaics (건물 부착형 고경량 유연성 슁글드 태양광 모듈)

  • Minseob, Kim;Min-Joon, Park;Jinho, Shin;Eunbi, Lee;Chaehwan, Jeong
    • Current Photovoltaic Research
    • /
    • v.10 no.4
    • /
    • pp.107-110
    • /
    • 2022
  • Lightweight and flexible photovoltaic (PV) modules are attractive for building-integrated photovoltaic (BIPV) applications because of their easy construction and applicability. In this study, we fabricated lightweight and flexible c-Si PV modules using ethylene tetrafluoroethylene (ETFE) front cover and shingled design string cells. The ETFE front cover instead of glass made the PV modules lighter in weight, and the shingled design string cells increased the flexibility. Finally, we fabricated a PV module with a conversion power of 240.08 W at an area of 1.25 m2 and weighed only 2 kg/m2. Moreover, to check the PV module's flexibility, we conducted a bending test. The difference of conversion power between the modules before and after bending shown was only 1.7 W, which showed a power reduction rate of about 0.7%.

A Study on the Durability Complement of Lightweight Photovoltaic Module (경량화 태양광 모듈의 내구성 보완에 관한 연구)

  • Jeong, Taewung;Park, Min-Joon;Kim, Hanjun;Song, Jinho;Moon, Daehan;Hong, Kuen Kee;Jeong, Chaehwan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.2
    • /
    • pp.110-114
    • /
    • 2021
  • In this study, we fabricated light-weight solar module for various applications such as building integrated photovoltaics (BIPV), vehicles, trains, etc. Ethylene tetra fluoro ethylene (ETFE) film was applied as a material to replace the cover glass, which occupies more than 65% of the weight of the PV module. Glass fiber reinforced plastic (GRP) was applied to the ones with a low durability by replacing the cover glass to ETFE. Moreover, to achieve a high solar power conversion in this study, we applied a shingled design to weight reduced solar modules. The shingled module with GRP shows 183.7 W of solar-to-power conversion, and the output reduction rate after weight load test was 1.14%.