• Title/Summary/Keyword: Buffer solution

Search Result 1,000, Processing Time 0.021 seconds

THE INFLUENCE OF pH ON THE FORMATION OF ARTIFICIAL ROOT CARIES IN ACID BUFFER SOLUTION (산 완충용액의 pH가 인공치근우식의 형성에 미치는 영향)

  • Oh, Hyun-Suk;Kum, Kee-Yeon;Ro, Byeng-Duck;Lee, Chan-Young
    • Restorative Dentistry and Endodontics
    • /
    • v.24 no.3
    • /
    • pp.495-502
    • /
    • 1999
  • Recently root caries is reported as an increasing oral disease Many researchers studied in vivo and in vitro enamel lesions but due to its peculiar structure and different chemical composition compared to the enamel, little effort has been made to root caries study. The purpose of this study is to compare and to evaluate the effect of pH on the progression of artificial root caries lesion. Under the constant degree of saturation, the specimens were divided into 4 groups(pH 4.3, 5.0, 5.5, 6.0). Each group was immersed in acid buffer solution for 1, 3, 5, 7 days and examined using the polarizing microscope. The results were as follows: 1. The body of the lesion in the dentin showed higher degree of positive birefringence compared to sound dentin. 2. The rate of progression of the lesion slowed as the pH increased. 3. In all groups, the lesion progressed rapidly at the initiation or the experiment but increased gradually as time elapsed. In conclusion, the study shows that the pH in the acid buffer solution influenced the rate of progression of the lesion in artificial root caries. Compared to the previous enamel study, the initial pattern of the lesion progressed rapidly and as time elapsed increased gradually.

  • PDF

동전기 기술과 계면활성제를 이용한 clay에서의 Phenanthrene 제거

  • 박지연;이현호;조현정;양지원
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2000.05a
    • /
    • pp.121-124
    • /
    • 2000
  • In-situ soil remediation using electrokinetics has been investigated and the attempts for the removal of hydrocarbons have been continued. In this study, the electrokinetic remediation using three different kinds of surfactnats was conducted for the removal of phenanthrene from clay The used surfactnats were APG, Brij30 and SDS. In the solubility test for phenanthrene, the experimental result was APG

  • PDF

Hydrodynamic and Atmospheric Effects on Corrosion of Zinc in Borate Buffer Solution (Borate 완충용액에서 아연의 부식에 대한 대류와 대기의 영향)

  • Chung, Se-Jin;Kim, Youn-Kyoo
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.4
    • /
    • pp.575-580
    • /
    • 2011
  • It was investigated into the effects on zinc corrosion of the rotation speed of Zn-RDE and the oxygen concentration in borate buffer solution. Zinc corrosion was heavily influenced on the rotation speed of electrode and the oxygen concentration. We have suggested the disproportion reaction following the reversible one electron transfer as the corrosion mechanism of zinc.

Preparation of Kerosine-Based Magnetic Ferrofluid by Steric Stabilizaton (Steric Stabilization에 의한 석유분산매 자성유체의 제조)

  • 신학기;장현명;김태옥
    • Journal of the Korean Ceramic Society
    • /
    • v.27 no.5
    • /
    • pp.684-692
    • /
    • 1990
  • Ultrafine magnetite powder for the ferromagnetic fluid was prepared by an addition of alkaline solution to the solution containing Fe2+ and Fe3+ ions at 6$0^{\circ}C$. The optimum condition of the magnetite synthesis was delineated by examining such various physico-chemical properties as Fe2+/Fe+3 ratio in the powder, phase characteristics, MHC and $\sigma$max. A new scheme for the steric stabilization of colloidal dispersion was proposed using the concept of the buffer group action for the increased interfacial density of the stabilizing moieties at colloid particle/dispersion medium interface. The proposed concept was successfully applied to the preparation of the kinetically stable kerosinebased ferrofluid using Tween and Span as dispersants. In the dispersion of magnetite particles in a kerosine, Tween(polyoxyethylene sorbitan oleate) acts as a primary stabilizer which provides an anchor group, whereas Span(sorbitan oleate) can be classified as a secondary stabilizer which adsorbs on the surface of magnetite particle through the action of the buffer group. Dispersion studies using various quantities of Tween and Span supported the concept of the buffer group action for increased dispersion characteristics of the kerosine based ferromagnetic fluid.

  • PDF

Characterization of Solution-Processed Oxide Transistor with Embedded Electron Transport Buffer Layer (전자 수송층을 삽입한 용액 공정형 산화물 트랜지스터의 특성 평가)

  • Kim, Han-Sang;Kim, Sung-Jin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.8
    • /
    • pp.491-495
    • /
    • 2017
  • We investigated solution-processed indium-zinc oxide (IZO) thin-film transistors (TFTs) by inserting a 2-(4-biphenylyl)-5-(4-tert-butylphenyl)-1,3,4-oxadiazole (PBD) buffer layer. This buffer layer efficiently tuned the energy level between the semiconducting oxide channel and metal electrode by increasing charge extraction, thereby enhancing the overall device performance: the IZO TFT with embedded PBD layer (thickness: 5 nm; width: $2,000{\mu}m$; length: $200{\mu}m$) exhibited a field-effect mobility of $1.31cm^2V^{-1}s^{-1}$, threshold voltage of 0.12 V, subthreshold swing of $0.87V\;decade^{-1}$, and on/off current ratio of $9.28{\times}10^5$.

Design and Implementation of a optical buffer using optical wavelength converters (파장 변환기를 이용한 광버퍼의 설계 및 구현)

  • 황현용;곽동용
    • Proceedings of the IEEK Conference
    • /
    • 2003.11c
    • /
    • pp.109-112
    • /
    • 2003
  • Wavelength division multiplexing technology is a promising solution for the next generation optical networks. Optical buffer is a key component for optical packet switching system. It can be used to hold optical packets and to resolve the contention of optical packets. In this paper, we implemented a optical buffer using optical wavelength converters and demonstrated that optical packets are delayed successfully.

  • PDF

The controversial points for the assessment of soil contamination related to the change of pH of extraction solution in using partial extraction in standard method in Korea (국내 토양오염 공정시험방법의 용출법 사용시 용출액의 pH의 변화가 토양 오염 평가에 미치는 문제점)

  • 오창환;유연희;이평구;이영엽
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2000.11a
    • /
    • pp.294-297
    • /
    • 2000
  • Heavy metals are extracted from Chonju stream sediment, roadside soils and sediments along Honam expressway, soils and tailings from mining area using partial ectraction in Standard Method, partial ectraction method with maintaining 0.1N of extraction solution and acid digestion. In samples having buffer capacity against acid, 0.1N of extraction solution can not be maintained and pH of extraction solution increases up to 8.0 when partial extraction in Standard Method is used. The averages and ranges of (heavy metals extracted using partial extraction in standard method, HPE)/(heavy metals extracted using partial extraction method with maintaining 0.1N of extraction solution, HPEM) values are 0.506 and 0.145~1.126 in Cd, 0.534~ and 0.078~0.928 in Zn, 0.461 and 0.041~1.715 in Mn, 0.359 and 0.011~0.874 in Cu, 0.195 and 0.018~1.785 in Cr, 0.710 and 0.003~3.075 in Pb, and 0.088 and 1.73$\times$10$^{-5}$ ~0.303 in Fe. These data indicate that the difference between HPE and HPEM is big in the order of Fe, Cr, Cu, Mn, Cd, Zn and Pb. It is quite possible that the partial extraction method in Standard Method of soil in Korea is not adequate for an assessment of contamination in area where buffer capacity of soil will be decreased or lost after a long term exposure of soils to environmental damage.

  • PDF

THE EFFECTS OF THE DEGREE OF SATURATION OF ACIDULATED BUFFER SOLUTIONS IN ENAMEL AND DENTIN REMINERALIZATION AND AFM OBSERVATION OF HYDROXYAPATITE CRYSTALS (유기산 완충용액의 포화도가 법랑질 및 상아질의 재광화에 미치는 영향과 수산화인회석의 AFM 관찰)

  • Park, Jeong-Won;Hur, Buck;Lee, Chan-Young
    • Restorative Dentistry and Endodontics
    • /
    • v.25 no.3
    • /
    • pp.459-473
    • /
    • 2000
  • Dental caries is the most common disease in the maxillofacial area. There are many factors contributing to its development, but complete understanding and prevention is not fully known. Since the structure of the coronal and root portion of the tooth is different, the remineralization and demineralization process is also known to be different. In this study, by using a partially saturated buffer solution, we created artificial enamel and dentin caries and evaluated mineral loss. A remineralization solution with four different degrees of saturation (degree of saturation ; group 1, 0.268, group 2, 0.309, group 3, 0.339, group 4, 0.390, PH 4.3, F-2ppm) was used on a demineralized specimen. The mineral precipitating quantity and depth was evaluated by using microradiography. Using an atomic force microscope (AFM), hydroxyapatite crystals of normal, demineralized, and remineralized enamel and dentin were evaluated. The results were as follows: 1. As the degree of saturation of the remineralizing solution increased, the mineral precipitation in the enamel was increased. In group 4, mineral precipitation was limited near the surface. 2. As the degree of saturation of the remineralizing solution increased, the mineral precipitation in the dentin was decreased and it occurred in a deeper portion. In group 4, however, mineral precipitation occurred on the surface and its quantity increased. 3. There was a statistically significant interaction between enamel and dentin mineral content changes on specimens treated with remineralization and demineralization solution (demineralization r=0.44, remineralization r=0.44, p<0.05). 4. Demineralized hydroxyapatite crystals showed central and peripheral dissolving and widening of intercrystal spaces under the AFM. 5. In dentin remineralization small crystal precipitation occurred between the large crystals. We conclude that by adjusting acidulated buffer solution's degree of saturation, we can control enamel and dentin remineralization. In addition, the AFM is highly useful in evaluating changes in remineralized and demineralized hydroxyapatite crystals.

  • PDF

Effects of Film Formation Conditions on the Chemical Composition and the Semiconducting Properties of the Passive Film on Alloy 690

  • Jang, HeeJin;Kwon, HyukSang
    • Corrosion Science and Technology
    • /
    • v.5 no.4
    • /
    • pp.141-148
    • /
    • 2006
  • The chemical composition and the semiconducting properties of the passive films formed on Alloy 690 in various film formation conditions were investigated by XPS, photocurrent measurement, and Mott-Schottky analysis. The XPS and photocurrent spectra showed that the passive films formed on Alloy 690 in pH 8.5 buffer solution at ambient temperature, in air at $400^{\circ}C$, and in PWR condition comprise $Cr_2O_3$, $Cr(OH)_3$, ${\gamma}-Fe_2O_3$, NiO, and $Ni(OH)_2$. The thermally grown oxide in air and the passive film formed at high potential (0.3 $V_{SCE}$) in pH 8.5 buffer solution were highly Cr-enriched, whereas the films formed in PWR condition and that formed at low potential (-0.3 $V_{SCE}$) in pH 8.5 buffer solution showed relatively high Ni content and low Cr content. The Mott-Schottky plots exhibited n-type semiconductivity, inferring that the semiconducting properties of the passive films formed on Alloy 690 in various film formation conditions are dominated by Cr-substituted ${\gamma}-Fe_2O_3$. The donor density, i.e., concentration of oxygen vacancy, was measured to be $1.2{\times}10^{21}{\sim}4.6{\times}10^{21}cm^{-3}$ and lowered with increase in the Cr content in the passive film.