• Title/Summary/Keyword: Buffer Function

Search Result 344, Processing Time 0.027 seconds

Acceleration of Feature-Based Image Morphing Using GPU (GPU를 이용한 특징 기반 영상모핑의 가속화)

  • Kim, Eun-Ji;Yoon, Seung-Hyun;Lee, Jieun
    • Journal of the Korea Computer Graphics Society
    • /
    • v.20 no.2
    • /
    • pp.13-24
    • /
    • 2014
  • In this study, a graphics-processing-unit (GPU)-based acceleration technique is proposed for the feature-based image morphing. This technique uses the depth-buffer of the graphics hardware to calculate efficiently the shortest distance between a pixel and the control lines. The pairs of control lines between the source image and the destination image are determined by user's input, and the distance function of each control line is rendered using two rectangles and two cones. The distance between each pixel and its nearest control line is stored in the depth buffer through the graphics pipeline, and this is used to conduct the morphing operation efficiently. The pixel-unit morphing operation is parallelized using the compute unified device architecture (CUDA) to reduce the morphing time. We demonstrate the efficiency of the proposed technique using several experimental results.

Tungsten oxide interlayer for hole injection in inverted organic light-emitting devices

  • Kim, Yun-Hak;Park, Sun-Mi;Gwon, Sun-Nam;Kim, Jeong-Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.380-380
    • /
    • 2010
  • Currently, organic light-emitting diodes (OLEDs) have been proven of their readiness for commercialization in terms of lifetime and efficiency. In accordance with emerging new technologies, enhancement of light efficiency and extension of application fields are required. Particularly inverted structures, in which electron injection occurs at bottom and hole injection on top, show crucial advantages due to their easy integration with Si-based driving circuits for active matrix OLED as well as large open area for brighter illumination. In order to get better performance and process reliability, usually a proper buffer layer for carrier injection is needed. In inverted top emission OLED, the buffer layer should protect underlying organic materials against destructive particles during the electrode deposition, in addition to increasing their efficiency by reducing carrier injection barrier. For hole injection layers, there are several requirements for the buffer layer, such as high transparency, high work function, and reasonable electrical conductivity. As a buffer material, a few kinds of transition metal oxides for inverted OLED applications have been successfully utilized aiming at efficient hole injection properties. Among them, we chose 2 nm of $WO_3$ between NPB [N,N'-bis(1-naphthyl)-N,N'-diphenyl-1,1'-biphenyl-4,4'-diamine] and Au (or Al) films. The interfacial energy-level alignment and chemical reaction as a function of film coverage have been measured by using in-situ ultraviolet and X-ray photoelectron spectroscopy. It turned out that the $WO_3$ interlayer substantially reduces the hole injection barrier irrespective of the kind of electrode metals. It also avoids direct chemical interaction between NPB and metal atoms. This observation clearly validates the use of $WO_3$ interlayer as hole injection for inverted OLED applications.

  • PDF

A Dispatching Rule Considering Machine Utilization and Throughput under Finite Buffer Capacity (유한버퍼하에서 기계이용률과 산출량을 고려한 급송규칙)

  • Kim, Jong-Hwa;Cha, Sang-Soo
    • IE interfaces
    • /
    • v.15 no.3
    • /
    • pp.316-324
    • /
    • 2002
  • Automated Guided Vehicles are widely used as an essential material handling system for FMS to provide flexibility and efficiency. We suggest a new dispatching rule based on priority function which considers urgency and empty vehicle travel time under finite buffer capacity. We evaluate the performance of the proposed rule by comparing the performance of Shortest Travel Time/Distance(STT/D) rule in terms of machine utilization, throughput and WIP level using simulation. The simulation results show that the suggested dispatching rule is robust and provides better machine utilization, throughput with comparable WIP level compared to STT/D rule.

Production switching mechanism for an unreliable two-stage production line (고장이 있는 두단계 생산라인의 생산률 변환정책)

  • Koh, Shie-Gheun;Hwang, Hark
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.24 no.1
    • /
    • pp.105-113
    • /
    • 1998
  • This paper deals with a production line which consists of two production stages that are separated by a finite storage buffer. The inventory level in the storage buffer controls the production rate of the preceding stage. That is, the production rate becomes high (low) when the buffer inventory is low (high). We analyze the system characteristics utilizing the Markov process theory and then find an optimal control policy which maximizes a given system profit function. Also, a sensitivity analysis is made to examine the effects of various system parameters on the system performances.

  • PDF

A new macroblock-based bit allocation algorithm in multiple MPEG-1 video encoders system (복수개의 MPEG-1 영상 부호화기를 위한 매크로블럭 단위의 비트 할당 기법)

  • 김진수;김재균
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.1
    • /
    • pp.53-63
    • /
    • 1997
  • In this paper, we present a new macroblock-based bit allocation scheme in multiple MPEG-1 video encoders system and a single multiplexer over a single channel. The proposed scheme models the relations between fate(Bits/MB) and distortion(MSE/MB), rate and quantizer parameter(QP), distortion and quantizer parameter, respectively, in the same form. By using these relations, we minimize the Larangian cost function to obtain a bit allocation scheme based on macroblock unit. Experimental results show that the proposed scheme can reduce MSE compared to other conventional buffer-based rate control methods, i.e. independent buffer control method and shared common buffer control one. And we confirmed, through computer simulation, that the proposed scheme can be effectively modified to maintain the objective quality of a specific video service at a constant level.

  • PDF

Selective Cleavage of 2,2,2-Trichloroethyl Group with Zinc Dust in the Presence of Phthalimido Function (Phthalimido기 존재하에서 Zinc Dust에 의한 2,2,2-Trichloroethyl 기의 선택적 환원분해)

  • Chung Bong Young;Kim Young-Hwan
    • Journal of the Korean Chemical Society
    • /
    • v.23 no.3
    • /
    • pp.175-179
    • /
    • 1979
  • In acidic media such as aqueous acetic acid, phthalimide is reduced with zinc dust to give 3-hydroxyphthalimidine while the 2,2,2-trichloroethyl esters or glycosides are reductively cleaved. However, it has been discovered that, by employing a mixture of THF and pH 4.5 buffer solution as a solvent, 2,2,2-trichloroethyl group can be selectively removed with activated zinc dust in the presence of phthalimido function, provided that the reactant or the product does not have any free carboxylic acid function. By applying the above methods, reaction of $2,2,2-trichloroethyl 3,4,6-tri-O-acetyl-2-deoxy-2-phthalimido-{\beta}-D-glucopyranoside$ (1) with activated zinc dust gave a good yield of $3,4, 6-tri-O-acetyl-2-deoxy-2-phthalimido-{\beta}-D-glucopyranose$ (5) in THF-buffer solution, and $3,4,6-tri-O-acetyl-2-deoxy-2-(3-hydroxyphthalimidino)-{\beta}-D-glucopyranose$ (6) in aqueous acetic acid.

  • PDF

Thickness Effect of ZnO Electron Transport Layers in Inverted Organic Solar Cells

  • Jang, Woong-Joo;Cho, Hyung-Koun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.377-377
    • /
    • 2011
  • Organic solar cells (OSCs) with low cost have been studied to apply on flexible substrate by solution process in low temperature [1]. In previous researches, conventional organic solar cell was composed of metal oxide anode, buffer layer such as PEDOT:PSS, photoactive layer, and metal cathode with low work function. In this structure, indium tin oxide (ITO) and Al was generally used as metal oxide anode and metal cathode, respectively. However, they showed poor reliability, because PEDOT:PSS was sensitive to moisture and air, and the low work function metal cathode was easily oxidized to air, resulting in decreased efficiency in half per day [2]. Inverted organic solar cells (IOSCs) using high work function metal and buffer layer replacing the PEDOT:PSS have focused as a solution in conventional organic solar cell. On the contrary to conventional OSCs, ZnO and TiO2 are required to be used as a buffer layer, since the ITO in IOSC is used as cathode to collect electrons and block holes. The ZnO is expected to be excellent electron transport layer (ETL), because the ZnO has the advantages of high electron mobility, stability in air, easy fabrication at room temperature, and UV absorption. In this study, the IOSCs based on poly [N-900-hepta-decanyl-2,7-carbazole-alt-5,5-(40,70-di-2-thienyl-20,10,30-benzothiadiazole)] (PCDTBT) : [6,6]-phenyl C71 butyric acid methyl ester (PC70BM) were fabricated with the ZnO electron-transport layer and MoO3 hole-transport layer. Thickness of the ZnO for electron-transport layer was controlled by rotation speed in spin-coating. The PCDTBT and PC70BM were mixed with a ratio of 1:2 as an active layer. As a result, the highest efficiency of 2.53% was achieved.

  • PDF

Performance Analysis of Threshold-based Bernoulli Priority Jump Traffic Control Scheme (동적우선권제어함수 기반 TBPJ 트래픽 제어방식의 성능분석)

  • Kim, Do-Kyu
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.11S
    • /
    • pp.3684-3693
    • /
    • 2000
  • In this paper, performance of a nonblocking high speed packet switch with switching capacity m which adopts a dynamic priority control function (DPCF) of a threshold- based Bernoulli priority jump (TBPJ) scheme is considered. Each input queue has two separate buffers with different sizes for two classes of traffics, delay-sensitive and loss-sensitive traffics, and adopts a TBPJ scheme that is a general state-dependent Bernoulli scheduling scheme. Under the TBP] scheme, a head packet of the delay-sensitive traffic buffer goes into the loss -sensitive traffic buffer with Hernoulli probability p according to systems states that represent the buffer thresholds and the number of packets waiting for scheduling. Performance analysis shows that TBPJ scheme obtains large performance build-up for the delay-sensitive traffic without performance degradation for the loss-sensitive traffic. In addition to, TBP] scheme shows better performance than that of HOL scheme.

  • PDF

Evaluation of Noise Decreasing Effects by Structures in Roadside Buffer Green (도로변 완충녹지 구조에 따른 소음저감효과 평가)

  • Kim, Jeong-Ho;Oh, Deuk-Kyun;Yoon, Yong-Han
    • Journal of Environmental Science International
    • /
    • v.24 no.5
    • /
    • pp.647-655
    • /
    • 2015
  • In this study, to targeting Songpa of Seoul, were analyzed the effect on the noise mitigation in roadside buffer green spaces. Noise of Songpa Street buffer green space was determined to be higher during the day than at night. In addition, it was most of 60 db or more. However, the noise reduction function of the buffer green was not greatly affected by time. In the case of noise reduction rate, during the day time it was the order of the mounding type (18.14%)> plain type (5.73%)> slope type (4.08%), And, in the case of night time, it was the order of the mounding type (11.29%)> slope type (10.22%)> plain type (4.42%). Noise reduction rate, all of the daytime, was the highest in the mounding type. As a result of the factors on the amount of reduction of noise, More physical structure is mounding type, green structure is the stratification of green space, and the number of individuals is large, the higher the tree planting density, it is determined that the noise reduction effect is high. Also, factors affecting the noise reduction effect of the day and night were different.