• 제목/요약/키워드: Buffalo Milk

검색결과 80건 처리시간 0.023초

Lysozyme Activity in Buffalo Milk: Effect of Lactation Period, Parity, Mastitis, Season in India, pH and Milk Processing Heat Treatment

  • Priyadarshini, Subhadra;Kansal, Vinod K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제15권6호
    • /
    • pp.895-899
    • /
    • 2002
  • Lysozyme activity in buffalo milk in relation to the period of lactation, parity of animal, weather conditions and udder infections was studied. Effect of storage and heat processing of milk on lysozyme activity was determined. Lysozyme activity was higher in buffalo milk than in cow milk. Buffalo colostrum showed lysozyme activity 5 times of that in mature milk. Lysozyme activity in buffalo milk was not influenced by the parity of animal and the stage of lactation, however, it increased during extreme whether conditions (winter and summer). Lysozyme in both cow and buffalo milk exhibited maximum activity at pH 7.4. Buffalo milk lysozyme was fully stable while the cow milk lysozyme was partly inactivated by pasteurization (low temperature-long time as well as high temperature-short time treatments). Lysozyme in buffalo milk was more stable than in cow milk during storage and heat treatment. A 10 to 50-fold increase in milk lysozyme activity was observed in mastitic cows. An assay of lysozyme activity in milk can be used to diagnose mastitis in cattle but not in buffaloes. Some buffaloes exhibited 1000 fold greater lysozyme activity and moderately raised somatic cell count in milk, but there was no sign of mastitis in these animals. A possible role of milk lysozyme in prevention of mastitis in buffaloes is discussed.

COMPARATIVE STUDY ON PANEER MAKING FROM BUFFALO AND COW MILK

  • Masud, T.;Athar, I.H.;Shah, M.A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제5권3호
    • /
    • pp.563-565
    • /
    • 1992
  • The objective of this study is to compare the qualitative and quantitative properties of paneer prepared from buffalo and cow milk. Paneer from buffalo milk had higher total solids as compared to cow. Moreover significant differences were recorded in fat and protein contents among tested samples of milk, cheese and whey respectively. The results of the organoleptic evaluations showed that paneer made from cow milk was liked more as compared to buffalo.

Polymorphisms of LEP, LGB and PRLR in water buffalo

  • Seong, Jiyeon;Kong, Hong Sik
    • 농업과학연구
    • /
    • 제39권4호
    • /
    • pp.577-581
    • /
    • 2012
  • The polymorphisms of several genes including Leptin (LEP), beta-lactoglobulin (LGB) and Prolactin receptor (PRLR) have been shown to affect milk composition traits in dairy cattle. But, the effects of these polymorphisms on the milk traits of Philippine water buffalo are still unclear. In the Philippines, buffalo are the major milk producers most of which are the Philippine carabao (PC), the American Murrah Buffalo (AMB) and Bulgarian Murrah Buffalo (BMB). The LEP, LGB and PRLR genes are considered to be associated with milk production traits. The objective of the present study was to identify the single nucleotide polymorphisms (SNPs) in the LEP, LGB and PRLR genes of PC, AMB and BMB and to investigate the effect of the SNPs on milk production traits in these buffalo. Genetic polymorphisms were screened by DNA sequencing and 12 SNPs were detected in BMB; 5 SNPs were in LEP exon3 region (G14227A, G14343A, T14502C, C14526T, G14603A); 5 SNPs were in LGB exon 2 region (G1861C, A1900G, G1901T, T1948C, G1949A); 2 SNPs were in PRLR exon 6 (T59047C, T59109C). Also, 12 polymorphism sites between cattle and buffalo were identified. Our analysis of the association between SNPs and milk production traits should be useful in future studies of buffalo breeding to improve lactation performance.

Effect of Cattle Breeds on Milk Composition and Technological Characteristics in China

  • Yang, T.X.;Li, H.;Wang, F.;Liu, X.L.;Li, Q.Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제26권6호
    • /
    • pp.896-904
    • /
    • 2013
  • Cattle breeds have a striking effect on milk, including milk composition and technological characteristics. This study aims to compare milk composition, acidification activity, viscosity, milk dispersion system stability and casein molecular weight among three buffalo breeds in China. The technological characteristics of milk produced by three cattle breeds of river buffalo (Murrah), crossbreed 1st generation ($F_1$), crossbreed multiple generation ($F_H$, $H{\geq}3$) buffaloes were investigated. Cattle breeds showed evident effect on milk protein, fat and total solids content, but little effect on most of buffalo casein molecular weight. Milk fat, protein content and the viscosity of buffalo milk from river buffalo were lower than those of $F_1$ and $F_H$, so was the buffer capacity. The viscosity was negatively correlated to temperature and concentration. Results of stability coefficient showed that milk dispersion system had the best dynamic stability characteristics under pH 6.6 and 6 times dilution, while zeta potential of Murrah milk was slightly higher than that of hybrid offspring ($F_1$, $F_H$). SDS-PAGE results showed that buffalo ${\alpha}_s$-casein had a slightly faster mobility than standard ${\alpha}_s$-casein; while buffalo ${\beta}$-casein showed a slightly slower mobility than standard ${\beta}$-casein. There is no clear differences in molecular weight of ${\alpha}_s$-, ${\beta}$-, and ${\kappa}$-casein among Murrah, $F_1$ and $F_H$.

Mid-infrared (MIR) spectroscopy for the detection of cow's milk in buffalo milk

  • Anna Antonella, Spina;Carlotta, Ceniti;Cristian, Piras;Bruno, Tilocca;Domenico, Britti;Valeria Maria, Morittu
    • Journal of Animal Science and Technology
    • /
    • 제64권3호
    • /
    • pp.531-538
    • /
    • 2022
  • In Italy, buffalo mozzarella is a largely sold and consumed dairy product. The fraudulent adulteration of buffalo milk with cheaper and more available milk of other species is very frequent. In the present study, Fourier transform infrared spectroscopy (FTIR), in combination with multivariate analysis by partial least square (PLS) regression, was applied to quantitatively detect the adulteration of buffalo milk with cow milk by using a fully automatic equipment dedicated to the routine analysis of the milk composition. To enhance the heterogeneity, cow and buffalo bulk milk was collected for a period of over three years from different dairy farms. A total of 119 samples were used for the analysis to generate 17 different concentrations of buffalo-cow milk mixtures. This procedure was used to enhance variability and to properly randomize the trials. The obtained calibration model showed an R2 ≥ 0.99 (R2 cal. = 0.99861; root mean square error of cross-validation [RMSEC] = 2.04; R2 val. = 0.99803; root mean square error of prediction [RMSEP] = 2.84; root mean square error of cross-validation [RMSECV] = 2.44) suggesting that this method could be successfully applied in the routine analysis of buffalo milk composition, providing rapid screening for possible adulteration with cow's milk at no additional cost.

Effect of Alpha-lactalbumin Gene Polymorphism on Milk Production Traits in Water Buffalo

  • Dayal, S.;Bhattacharya, T.K.;Vohra, V.;Kumar, P.;Sharma, Arjava
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제19권3호
    • /
    • pp.305-308
    • /
    • 2006
  • A genetic study was conducted to elucidate the effect of alpha-Lactalbumin (${\alpha}$-LA) gene polymorphism on milk production traits involving total milk yield and daily milk yield during first lactation in two breeds of water buffaloes namely, Murrah and Bhadawari. Single strand conformation polymorphism (SSCP) was carried out to explore genetic polymorphism present at this locus. For this study, exon 1 region of ${\alpha}$-LA was analyzed. Finally, polymorphism data was associated with milk production traits by employing least square analysis. In Murrah buffalo, five genotypes such as AB, BB, BC, CC and CD and four alleles A, B, C and D were detected whereas in Bhadawari buffalo two genotypes namely, AB and BC and three alleles namely, A, B and C were found. Genotypes showed significant effects ($p{\leq}0.05$) on total milk yield and daily milk yield in Bhadawari buffalo but had non-significant effects on these traits in Murrah buffalo.

Effects of Mastitis on Buffalo Milk Quality

  • Tripaldi, C.;Palocci, G.;Miarelli, M.;Catta, M.;Orlandini, S.;Amatiste, S.;Di Bernardini, R.;Catillo, G.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제23권10호
    • /
    • pp.1319-1324
    • /
    • 2010
  • The objectives of this study were to compare the effectiveness of different indicators of mammary inflammation in buffalo and to evaluate the association of the indicators with buffalo milk yield, composition, and rennet coagulation properties. This study was carried out at four buffalo farms in central Italy using a total of 50 lactating buffalo. Milk from each buffalo was tested at the beginning, middle, and end of lactation. To evaluate the relationship between mastitis markers and milk components, three classes were defined for each of the following markers: total somatic cell count (TSCC), differential somatic cell count (DSCC), and bacteriological results The regression coefficient for the reference method and the alternative method of determining TSCC was 0.81, indicating that the method routinely used to analyze buffalo milk consistently underestimated actual TSCC. The milk samples positive for udder-specific bacteria also had higher TSCC values than the samples that were negative for bacteria ($872{\times}10^3$/ml vs. $191{\times}10^3$/ml). In samples that were positive for udder-specific bacteria, polymorphonuclear leukocytes (PMN) made up greater than 50% of the cells. Moreover, only 1% of the samples in the lowest TSCC class were positive for bacteria. The correlation between TSCC and PMN was stronger (0.70), and PMN values in buffalo milk increased significantly when the TSCC class changed from low (38%) to medium and high (56% and 64%). Milk yield was negatively related to TSCC. Significant changes in lactose (4.87%, 4.80% and 4.64%) and chloride content (0.650 mg/ml, 0.862 mg/ml and 0.882 mg/ml) were also observed with increasing TSCC values. Higher TSCC was associated with impaired rennet coagulation properties: the clotting time increased, while the curd firming time ($p{\leq}0.05$) and firmness decreased. We concluded that in buffalo as in dairy cows, TSCC is a valid indicator of udder inflammation; we also confirmed that a value of $ 200{\times}10^3 cells/ml should be used as the threshold value for early identification of an animal affected by subclinical mastitis. In addition to its association with significantly decreased milk yield, a TSCC value above this threshold value was associated with changes in milk composition and coagulating properties.

Chemical Composition, Nitrogen Fractions and Amino Acids Profile of Milk from Different Animal Species

  • Rafiq, Saima;Huma, Nuzhat;Pasha, Imran;Sameen, Aysha;Mukhtar, Omer;Khan, Muhammad Issa
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제29권7호
    • /
    • pp.1022-1028
    • /
    • 2016
  • Milk composition is an imperative aspect which influences the quality of dairy products. The objective of study was to compare the chemical composition, nitrogen fractions and amino acids profile of milk from buffalo, cow, sheep, goat, and camel. Sheep milk was found to be highest in fat ($6.82%{\pm}0.04%$), solid-not-fat ($11.24%{\pm}0.02%$), total solids ($18.05%{\pm}0.05%$), protein ($5.15%{\pm}0.06%$) and casein ($3.87%{\pm}0.04%$) contents followed by buffalo milk. Maximum whey proteins were observed in camel milk ($0.80%{\pm}0.03%$), buffalo ($0.68%{\pm}0.02%$) and sheep ($0.66%{\pm}0.02%$) milk. The non-protein-nitrogen contents varied from 0.33% to 0.62% among different milk species. The highest r-values were recorded for correlations between crude protein and casein in buffalo (r = 0.82), cow (r = 0.88), sheep (r = 0.86) and goat milk (r = 0.98). The caseins and whey proteins were also positively correlated with true proteins in all milk species. A favorable balance of branched-chain amino acids; leucine, isoleucine, and valine were found both in casein and whey proteins. Leucine content was highest in cow ($108{\pm}2.3mg/g$), camel ($96{\pm}2.2mg/g$) and buffalo ($90{\pm}2.4mg/g$) milk caseins. Maximum concentrations of isoleucine, phenylalanine, and histidine were noticed in goat milk caseins. Glutamic acid and proline were dominant among non-essential amino acids. Conclusively, current exploration is important for milk processors to design nutritious and consistent quality end products.

Immunity of the Buffalo Mammary Gland during Different Physiological Stages

  • Dang, A.K.;Kapila, Suman;Tomar, Parveen;Singh, Charan
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제20권8호
    • /
    • pp.1174-1181
    • /
    • 2007
  • To study the immunity of the buffalo mammary gland during involution and around parturition and compare it with the mastitic mammary gland, milk samples were collected from 9 Murrah buffaloes during the above critical periods. SCC of buffalo milk increased significantly (p<0.01) by day 21 of involution and one week prepartum. SCC was significantly higher around parturition but became normal at 14 days postpartum. Phagocytic activity (PA) and phagocytic index (PI) of the buffalo milk neutrophils decreased as the duration of the dry period increased. Elevated levels of immunoglobulins at calving improved the PA and PI, but the lowest PA of 18.8% and PI of 1.75 were recorded at 7 days postpartum. Buffaloes suffering from clinical mastitis had PA of 12.3% and PI of 1.46 that increased significantly (p<0.01) on the third day of treatment. Distance of teat from ground level was found to be minimum at one week before parturition. The investigation showed that in vitro phagocytic activity of buffalo neutrophils was weakest at one week postpartum.

Genome-wide identification of long noncoding RNA genes and their potential association with mammary gland development in water buffalo

  • Jin, Yuhan;Ouyang, Yina;Fan, Xinyang;Huang, Jing;Guo, Wenbo;Miao, Yongwang
    • Animal Bioscience
    • /
    • 제35권11호
    • /
    • pp.1656-1665
    • /
    • 2022
  • Objective: Water buffalo, an important domestic animal in tropical and subtropical regions, play an important role in agricultural economy. It is an important source for milk, meat, horns, skin, and draft power, especially its rich milk that is the great source of cream, butter, yogurt, and many cheeses. In recent years, long noncoding RNAs (lncRNAs) have been reported to play pivotal roles in many biological processes. Previous studies for the mammary gland development of water buffalo mainly focus on protein coding genes. However, lncRNAs of water buffalo remain poorly understood, and the regulation relationship between mammary gland development/milk production traits and lncRNA expression is also unclear. Methods: Here, we sequenced 22 samples of the milk somatic cells from three lactation stages and integrated the current annotation and identified 7,962 lncRNA genes. Results: By comparing the lncRNA genes of the water buffalo in the early, peak, and late different lactation stages, we found that lncRNA gene lnc-bbug14207 displayed significantly different expression between early and late lactation stages. And lnc-bbug14207 may regulate neighboring milk fat globule-EGF factor 8 (MFG-E8) and hyaluronan and proteoglycan link protein 3 (HAPLN3) protein coding genes, which are vital for mammary gland development. Conclusion: This study provides the first genome-wide identification of water buffalo lncRNAs and unveils the potential lncRNAs that impact mammary gland development.