• 제목/요약/키워드: Budding yeast cell

검색결과 44건 처리시간 0.021초

Growth of Budding Yeasts under Optical Trap

  • Im, Kang-Bin;Kim, Hyun-Ik;Kim, Soo-Ki;Kim, Chul-Geun;Oh, Cha-Hwan;Song, Seok-Ho;Kim, Pill-Soo
    • Molecular & Cellular Toxicology
    • /
    • 제3권1호
    • /
    • pp.19-22
    • /
    • 2007
  • Optic tweezer is powerful tool to investigate biologic cells. Of eukaryotic cells, it was poorly documented regarding to optic trapping to manipulate yeasts. In preliminary experiment to explore yeast biology, interferometric optical tweezers was exploited to trap and manipulate budding yeasts. Successfully, several budding yeasts are trapped simultaneously. We found that the budding direction of the daughter cell was almost outward and the daughter cell surrounded by other yeasts grows slowly or fail to grow. Thus it was assumed that neighboring cells around budding yeast may be critical in budding and the growth of daughter cells. This is first report pertaining to the pattern of yeast budding under the optical trap when multiple yeasts were trapped.

Characterization of a Cadmium-resistant Yeast Strain in Response to Cadmium or Heat Shock Stress

  • Huh, Nam-Eung;Choi, Nack-Shick;Seo, Young-Kyo;Yu, Tae-Shick
    • Journal of Microbiology and Biotechnology
    • /
    • 제4권1호
    • /
    • pp.30-35
    • /
    • 1994
  • A varient strain of budding yeast, Hansenula anomala B-7 which had been identified to be highly resistant to cadmium ions, were observed by transmission electron microscopy. It was shown that the cells accumulated excess amounts of cadmium ions throughout inside the cell rather than on the cell surface. The cell growth in response to cadmium or heat shock stress has also been investigated. It was observed that the cells precultured in the presence of 500 $\mu$ g/ml of Cd ions grew slower than those precultured at 1, 000 $\mu$ g/ml of the metal ions, when they were cultivated in the media containing 1, 000 $\mu$g/ml of the metal ions. Heat shock, however, stimulated the cell growth transiently, when the cells were allowed to grow in the presence of 1, 000 $\mu$g/ml of the metal ions. But the cells given heat shock for more than 100 min received permanent damage to growth. Effects of both stresses on budding rate was also examined. It revealed that the stresses did not change the budding ratio much, which was contradictory to that observed from the same budding yeast, Saccharomyces cerevisiae. Furthermore, the cells treated with 1, 000 $\mu$g/ml of the metal ions not only induced, but also switched off the expression of several new proteins. Some of the cadmium stress-inducible proteins were estimated to be also induced by heat shock stress.

  • PDF

Cell Cycle Regulation in the Budding Yeast

  • Nguyen, Cuong;Yoon, Chang-No;Han, Seung-Kee
    • 한국생물정보학회:학술대회논문집
    • /
    • 한국생물정보시스템생물학회 2005년도 BIOINFO 2005
    • /
    • pp.278-283
    • /
    • 2005
  • Cell cycle is regulated cooperatively by several genes. The dynamic regulatory mechanism of protein interaction network of cell cycle will be presented taking the budding yeast as a sample system. Based on the mathematical model developed by Chen et at. (MBC, 11,369), at first, the dynamic role of the feedback loops is investigated. Secondly, using a bifurcation diagram, dynamic analysis of the cell cycle regulation is illustrated. The bifurcation diagram is a kind of ‘dynamic road map’ with stable and unstable solutions. On the map, a stable solution denotes a ‘road’ attracting the state and an unstable solution ‘a repelling road’ The ‘START’ transition, the initiation of the cell cycle, occurs at the point where the dynamic road changes from a fixed point to an oscillatory solution. The 'FINISH' transition, the completion of a cell cycle, is returning back to the initial state. The bifurcation analysis for the mutants could be used uncovering the role of proteins in the cell cycle regulation network.

  • PDF

Bifurcation analysis of budding yeast cell cycle

  • Nguyen, Cuong;Yoon, Chang-No;Kim, Hak-Yong;Han, Seung-Kee
    • 한국생물정보학회:학술대회논문집
    • /
    • 한국생물정보시스템생물학회 2004년도 The 3rd Annual Conference for The Korean Society for Bioinformatics Association of Asian Societies for Bioinformatics 2004 Symposium
    • /
    • pp.50-56
    • /
    • 2004
  • Bifurcation analysis of cell cycle regulation in the budding yeast is performed basedon the mathematical model by Chen et al [Molecular biology of cell, 11:369-391, 2000]. On the bifurcation diagram, locations of both stable and unstable solutions of the nonlinear differential equations are presented by taking the mass of cell as a controlparameter. Based on the bifurcation diagram, dynamic mechanism underlying the 'start' transition, initiation of a new round of cell cycle, and the 'finish' transition, completion of cell cycle and returning back to the initial state, is discussed: the 'start' transition is a transition from a stable fixed solution for a small mass and to an oscillatory state for a large mass, and the 'finish' transition is a switching back to the stable fixed solution from the oscillatory state. To understand the role of the genes during the cell cycle regulation, bifurcation diagrams for the mutants are compared with that of the wild type.

  • PDF

The Role of Abp140p in Actin Dynamics of Budding Yeast

  • Lim, Bum-Soon;Lee, Yong-Keun;Pon, Liza A.;Yang, Hyeong-Cheol
    • International Journal of Oral Biology
    • /
    • 제30권1호
    • /
    • pp.17-22
    • /
    • 2005
  • In the previous studies of Saccharomyces cerevisiae, Abp140p (actin binding protein 140) fused to GFP has been only a protein that can label actin cables of yeast cells so far. However, the role of Abp140p in actin dynamics was remained elusive. In this study, the function of Abp140p was investigated with a deletion mutant and overexpression of GFP fused Abp140p. The deletion mutant was slightly more susceptible to Latrunculin-A (Lat-A), an actin-monomer sequestering agent, than wild type, although no significant deformation of actin structures was caused by ABP 140 deletion. Overexpression of Abp140p-GFP retarded cell growth, and produced thick and robust actin cables. Lat-A was not able to destabilize the thick actin cables, which suggests that actin dynamics was compromised in the cells with surplus of Abp140p. Therefore, Abp140p seems to stabilize actin cables together with other bundling proteins. Recently, actin cable dynamics of budding yeast was found to have a resemblance to that of filopodial tip of cultured mammalian cells. Retrograde movement of actin cables from buds to mother cells indicated local generation of the cable at bud sites. By using Abp140p-GFP, we traced the steps in the generation of a new actin cable after elimination of old cables by sodium azide. Before the appearance of a new actin cable, Abp140p-GFP concentrated in buds and disappeared, as mother cells became abundant in actin cables. Our observations provide a direct evidence of actin cable formation at buds of budding cells.

Cell Cycle Regulation in the Budding Yeast

  • Nguyen, Cuong;Yoon, Chang-No;Han, Seung-Kee
    • 한국미생물학회:학술대회논문집
    • /
    • 한국미생물학회 2005년도 International Meeting of the Microbiological Society of Korea
    • /
    • pp.93-93
    • /
    • 2005
  • PDF

A Role of YlBud8 in the Regulation of Cell Separation in the Yeast Yarrowia lipolytica

  • Li, Yun-Qing;Xue, Qing-Jie;Yang, Yuan-Yuan;Wang, Hui;Li, Xiu-Zhen
    • Journal of Microbiology and Biotechnology
    • /
    • 제29권1호
    • /
    • pp.141-150
    • /
    • 2019
  • The spatial landmark protein Bud8 plays a crucial role in bipolar budding in the budding yeast Saccharomyces cerevisiae. The unconventional yeast Yarrowia lipolytica can also bud in a bipolar pattern, but is evolutionarily distant from S. cerevisiae. It encodes the protein YALI0F12738p, which shares the highest amino acid sequence homology with S. cerevisiae Bud8, sharing a conserved transmembrane domain at the C-terminus. Therefore, we named it YlBud8. Deletion of YlBud8 in Y. lipolytica causes cellular separation defects, resulting in budded cells remaining linked with one another as cell chains or multiple buds from a single cell, which suggests that YlBud8 may play an important role in cell separation, which is distinct from the function of Bud8 in S. cerevisiae. We also show that the YlBud8-GFP fusion protein is located at the cell membrane and enriched in the bud cortex, which would be consistent with a role in the regulation of cell separation. The coiled-coil domain at the N-terminus of YlBud8 is important to the correct localization and function of YlBud8, as truncated proteins that do not contain the coiled-coil domain cannot rescue the defects observed in $Ylbud8{\Delta}$. This finding suggests that a new signaling pathway controlled by YlBud8 via regulation of cell separation may exist in Y. lipolytica.

생존능이 증진된 활성 건조효모 생산을 위한 효모세포배양 (Yeast Cell Cultivation of Produce Active Dry Yeast with Improved Viability)

  • 김근;김재윤
    • KSBB Journal
    • /
    • 제14권5호
    • /
    • pp.561-565
    • /
    • 1999
  • Optimum conditions for vacuum-drying ad cultivation of yeast cells for the production of active dry yeast were examined. At lower temperature, more drying time was required to dry the yeast pellet to reach the desirable water content(8%). Optimum temperature of vaccum oven and time for drying was 63$^{\circ}C$ and 90 min, respectively. Optimum medium composition for flask culture using cane molasses as the substrate were 0.25% sugar, 0.013% $K_2$HPO$_4$, 0.1% $K_2$HPO$_4$. and 0.125% (NH$_4$)$_2$SO$_4$. Culture temperature $25^{\circ}C$ gave the highest survival rate of dired yeast. After finishing fed-batch culture and the culture was left in the fermentor without adding any sugar or nutrient, survival of the dried yeast harvested from the fermentor increased to 86.0% after 36 hr. It was also observed that the yeast cells with higher budding rates showed lower survival rate.

  • PDF

Isolation and characterization of two unrecorded yeast species in the phylum Basidiomycota

  • Jieun Seok;Jaewoo Bai;Sathiyaraj Srinivasan
    • Journal of Species Research
    • /
    • 제13권1호
    • /
    • pp.105-110
    • /
    • 2024
  • The purpose of this study was to isolate and identify wild yeasts from soil samples collected in Seoul and Daejeon, Republic of Korea. To identify wild yeast strains, pairwise sequence comparisons of D1/D2 region of the 26S rRNA gene sequence were done using Basic Local Alignment Search Tool (BLAST). The cell morphologies were observed by phase contrast microscope and carbon source assimilation test were done using API 20C AUX kit. Among the 13 isolated strains, 11 strains were previously reported, but two strains have never been reported from Republic of Korea. The 13 strains were assigned to the phylum Basidiomycota. The two unrecorded yeast strains B2UV-201 and DJ1-5-B-10C belong to the genera Rhodotorula and Rhodosporidiobolus, respectively. The two unrecorded yeast strains are oval shaped and polar budding cells. This research focuses on the morphological and biochemical properties of the two unreported yeast species that have not officially been reported in Korea.