• Title/Summary/Keyword: Buckling resistance

Search Result 204, Processing Time 0.024 seconds

Numerical studies of steel-concrete-steel sandwich walls with J-hook connectors subjected to axial loads

  • Huang, Zhenyu;Liew, J.Y. Richard
    • Steel and Composite Structures
    • /
    • v.21 no.3
    • /
    • pp.461-477
    • /
    • 2016
  • Steel-concrete-steel (SCS) sandwich composite wall has been proposed for building and offshore constructions. An ultra-lightweight cement composite with density1380 kg/m3 and compressive strength up to 60 MPa is used as core material and inter-locking J-hook connectors are welded on the steel face plates to achieve the composite action. This paper presents the numerical models using nonlinear finite element analysis to investigate the load displacement behavior of SCS sandwich walls subjected to axial compression. The results obtained from finite element analysis are verified against the test results to establish its accuracy in predicting load-displacement curves, maximum resistance and failure modes of the sandwich walls. The studies show that the inter-locking J-hook connectors are subjected to tension force due to the lateral expansion of cement composite core under compression. This signifies the important role of the interlocking effect of J-hook connectors in preventing tensile separation of the steel face plates so that the local buckling of steel face plates is prevented.

A Study on the H-typed Railway Sleeper (H형 침목에 관한 연구)

  • Bae, Hyun-Ung;Bae, Sang-Won;Kim, Hae-Gon;Lee, Chin-Ok;Lim, Nam-Hyoung
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.680-683
    • /
    • 2010
  • The lateral stiffness of the track structure is very important mechanical property to prevent the track buckling and progress of misalignment. The increasing methods of the lateral stiffness of the track structure are the following; increases of the lateral ballast resistance, and increases of the lateral stiffness of the track panel. In order to increase the lateral stiffness of the tack panel, some of the sleepers resist together against the lateral movement can be the most economical and mechanical method. In this paper, H-typed sleeper developed to solve this problem is introduced and the mechanical advantages of this sleeper are investigated.

  • PDF

Longitudinal Force Analysis of CWR on High Speed Rail Bridges (고속철도 교량상의 장대레일 축력 해석)

  • 이지하;양신추;이종득
    • Proceedings of the KSR Conference
    • /
    • 1998.05a
    • /
    • pp.556-563
    • /
    • 1998
  • Railway bridges have a significant effect on the stress and displacement of continuous welded rail(CWR). Longitudinal compression force at high temperature, combined breaking or acceleration forces can introduce track buckling. On the other hand, longitudinal tensile forces, associated with low temperatures, in combination with breaking forces may break rail. Therefore, it is very important to work out thorough counter measures for those problems, specially in high speed rail which high safety is required. The exact evaluation of longitudinal force of rail has the key to the solution. The main aim of the present paper is to examine whether the longitudinal force of CWR's on Kyung-Bu-HSR satisfy the criteria to be fulfilled in the design of railway bridge. The analyses are carried out by using "CWRAP" program which was developed by our research group. The ballast resistance and breaking force effects on the longitudinal force of CWR are investigated.

  • PDF

Flexural Behaviors of Prestressed Composite Girder Bridges subjected to Negative Flexural Moment (부모멘트를 받는 프리스트레스트 합성형교의 휨 거동)

  • Kang, Byeong-Su;Joo, Young-Tae;Sung, Won-Jin;Shin, Dong-Hun;Lee, Yong-Hak
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.419-422
    • /
    • 2005
  • Prestressed composite girder bridges with concrete infilled steel tube at negative flexural moment region takes the advantages provided due to the interactive reaction in the steel tube and concrete interface layer, enhancing local buckling resistance and the concrete strength provided by the lateral confining effect of concrete. Two beams were tested to examine ultimate behaviors of prestressed composite girder bridges subjected to negative flexural moment. The experimental observations of the Prestressed composite girder bridges subjected to positive flexural moment are investigated and compared to the numerical results obtained by sectional analysis method, and 1-D. and 3-D. finite element analysis methods.

  • PDF

Interfacial Properties and Curing Behavior of Carbon Fiber/Epoxy Composites using Micromechanical Techniques and Electrical Resistivity Measurement (Micromechanical 시험법과 전기적 고유저항 측정을 이용한 탄소섬유강화복합재료의 계면 물성과 경화거동에 관한 연구)

  • 이상일;박종만
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.11a
    • /
    • pp.17-21
    • /
    • 2000
  • Logarithmic electrical resistivity of the untreated or thin diameter carbon fiber composite increased suddenly to the infinity when the fiber fracture occurred by tensile electro-micromechanical test, whereas that of the ED or thick fiber composite increased relatively broadly up to the infinity. Electrical resistance of single-carbon fiber composite increased suddenly due to electrical disconnection by the fiber fracture in tensile electro-micromechanical test, whereas that of SFC increased stepwise due to the occurrence of the partial electrical contact with increasing the buckling or overlapping in compressive test. Electrical resistivity measurement can be very useful technique to evaluate interfacial properties and to monitor curing behavior of single-carbon fiber/epoxy composite under tensile/compressive loading.

  • PDF

Structual Design of a Building with High Damping Provided by Deformation Amplification Mechanisms and Tuned Viscous Mass Damper

  • Mizuki Shigematsu;Takaaki Udagawa;Satoru Nagase
    • International Journal of High-Rise Buildings
    • /
    • v.12 no.3
    • /
    • pp.215-224
    • /
    • 2023
  • This paper presents the structural design and response control system of the JR MEGURO MARC building, a 70 meters high office building with steel structure located in Tokyo (Figure 1). In order to achieve high earthquake resistance and useable office space, this building integrates a centralized response control system with deformation amplification mechanisms and tuned viscous mass dampers on the lower floor. Moreover, buckling-restrained braces (BRB) are installed on the upper floors to increase the effectiveness of centralized response control system and to reduce damage of the main frames in the event of a major earthquake. It features an efficient centralized response control system by amplifying the deformation of the dampers without creating a soft story.

Compressive Behavior of Steel Plate-Concrete Structures using Eco-Oriented Cement Concrete (친환경시멘트 콘크리트를 사용한 강판콘크리트구조의 압축거동)

  • Kang, Cheol-Kyu;Choi, Byong-Jeong;Jeoung, Beak-Seon
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.5
    • /
    • pp.583-593
    • /
    • 2012
  • The domestic research of the steel plate concrete structures have been focused on the nuclear structures requiring much strong resistance. There are many advantages in the steel plate-concrete structures such as the possibility of prefabricated production and modular construction. This research tried to establish some basic design information of SC structures toward mid to low-rise general buildings with low strength. To reduce the strength mentioned, the some of the cement in weight was replaced by the soils which are traditional and environmental oriented material where the new system can be used to general buildings. This paper studied on the compressive characteristics, effective length factors, buckling loading, steel plate buckling, and stud strength using the compression member subjected to the concentrated compression loadings.

An Investigation into differences between codes for the Moment Strength of Deck Plates (데크플레이트의 휨 강도에 관한 기준 비교 연구)

  • Shin, Tae Song
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.1
    • /
    • pp.25-31
    • /
    • 2003
  • This research aimed to experimentally and theoretically investigate the moment strength of deck plates. A moment experiment was carried out using a full-scale 14 specimen. To prevent local buckling, the point load was applied at 1/4 points. After the experiment, theoretical analysis was conducted and the differences between various codes were identified. The experimental results were compared with AISI (the American Iron and Steel Institute), EC (Euro Code) 3, and KS (Korea Standard) codes. Analysis results are summarized as follows: (1) the failure mode was influenced by local buckling at the midpoint of the beam and/or at the intermediate loading point: (2) if yielding first occurred at the tension side, the moment strength would increase as the plastic reservation of the tension zone acted: (3) the experimental results were closest to the EC3 codes in which the partial plastic reservation was considered; (4) statistical evaluation based on the EC3 Annex Z showed that the partial resistance safety coefficient calculated applying to the EC3 formula, $^{\circ}{_M}$, was placed within 1.1 which was the target value of EC3 code; and (5) the analytical power of AISI and KS codeswere expected to improve into the level of EC3 codes if the concept of plastic reservation of the tension side would be introduced to them.

Mid-length lateral deflection of cyclically-loaded braces

  • Sheehan, Therese;Chan, Tak-Ming;Lam, Dennis
    • Steel and Composite Structures
    • /
    • v.18 no.6
    • /
    • pp.1569-1582
    • /
    • 2015
  • This study explores the lateral deflections of diagonal braces in concentrically-braced earthquake-resisting frames. The performance of this widely-used system is often compromised by the flexural buckling of slender braces in compression. In addition to reducing the compressive resistance, buckling may also cause these members to undergo sizeable lateral deflections which could damage surrounding structural components. Different approaches have been used in the past to predict the mid-length lateral deflections of cyclically loaded steel braces based on their theoretical deformed geometry or by using experimental data. Expressions have been proposed relating the mid-length lateral deflection to the axial displacement ductility of the member. Recent experiments were conducted on hollow and concrete-filled circular hollow section (CHS) braces of different lengths under cyclic loading. Very slender, concrete-filled tubular braces exhibited a highly ductile response, undergoing large axial displacements prior to failure. The presence of concrete infill did not influence the magnitude of lateral deflection in relation to the axial displacement, but did increase the number of cycles endured and the maximum axial displacement achieved. The corresponding lateral deflections exceeded the deflections observed in the majority of the previous experiments that were considered. Consequently, predictive expressions from previous research did not accurately predict the mid-height lateral deflections of these CHS members. Mid-length lateral deflections were found to be influenced by the member non-dimensional slenderness (${\bar{\lambda}}$) and hence a new expression was proposed for the lateral deflection in terms of member slenderness and axial displacement ductility.

Modal Testing of Arches for Plastic Film-Covered Greenhouses (비닐하우스 아치구조의 모달실험)

  • Cho, Soon-Ho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.2
    • /
    • pp.57-65
    • /
    • 2010
  • To determine the static buckling loads and evaluate the structural performance of slender steel pipe-arches such as for greenhouse structures, a series of modal tests using a fixed hammer and roving sensors was carried out, by providing no load, then a range of vertical loads, on an arch rib in several steps. More attention was given to an internal arch where vertical and horizontal auxiliary members are not placed, unlike an end arch. Modal parameters such as natural frequencies, mode shapes and damping ratios were extracted using more advanced system identification methods such as PolyMAX (Polyreference Least-Squares Complex Frequency Domain), and compared with those predicted by commercial FEA (Finite Element Analysis) software ANSYS for various conditions. A good correlation between them was achieved in an overall sense, however the reduction of natural frequencies due to the existence of preaxial loads was not apparent when the vertical load level was about up to 38% of its resistance. Some difficulties related to the field testing and parameter extraction for a very slender arch, as might arise from the influences of neighboring members, are carefully discussed.