• Title/Summary/Keyword: Buckling performance

Search Result 426, Processing Time 0.028 seconds

Proposal of a New Type of 4-Lane Soundproof Tunnel Girder and Structural Performance Evaluation (4차선급 신형식 방음터널 거더 제안 및 구조적 성능평가)

  • Goh, Won-Hui;Kim, Min-Jae;Ma, Chuan;Kang, Duck-Man;Zi, Goang-Suep
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.5
    • /
    • pp.24-31
    • /
    • 2021
  • The soundproof tunnels have been generally designed with H-beam girders, and the high weight of H-beam may cause the excessive design of the substructure. To solve this problem, this paper proposes a new soundproof tunnel girder design composed of pipes and discontinuous plates. First, the structural behavior of the straight girder according to the design parameters was examined through finite element analysis. The arrangement and shape of the plates were determined as the design parameter, to obtain the optimal design of girder. After then, the structural behavior and buckling stability of the arched girder were subsequently evaluated. As a result of the parameter analysis, it was confirmed that the axial force acting on the girder increased and the moment decreased as the ratio of unsupported sections decreased or the number of supporting plates increased. The stress concentration on the pipe member was relieved by increasing the long axis length of the elliptical plate. Arched girder analysis showed that the structural efficiency increase as the long axis of elliptical plate increase. As a result of the buckling evaluation, the buckling threshold load of the three connected girders was about 3.7 times higher than the design load. Consequently, it was confirmed that the proposed soundproof tunnel structure design satisfies both light weight and structural safety.

Seismic Performance Evaluation of Concrete-filled U-shaped Mega Composite Beams (콘크리트 채움 U형 메가 합성보의 내진성능 평가)

  • Lee, Cheol Ho;Ahn, Jae Kwon;Kim, Dae Kyung;Park, Ji-Hun;Lee, Seung Hwan
    • Journal of Korean Society of Steel Construction
    • /
    • v.29 no.2
    • /
    • pp.111-122
    • /
    • 2017
  • In this paper, the applicability of a 1900mm-deep concrete-filled U-shaped composite beam to composite ordinary moment frames (C-OMFs) was investigated based on existing test results from smaller-sized specimens and supplemental numerical studies since full-scale seismic testing of such a huge sized beam is practically impossible. The key issue was the web local buckling of concrete-filled U section under negative bending. Based on 13 existing test results compiled, the relationship between web slenderness and story drift capacity was obtained. From this relationship, a 1900mm-deep mega beam, fabricated with 25mm-thick plate was expected to experience the web local buckling at 2% story drift and eventually reach a story drift over 3%, thus much exceeding the requirements of C-OMFs. The limiting width to thickness ratio according to the 2010 AISC Specification was shown to be conservative for U section webs of this study. The test-validated supplemental nonlinear finite element analysis was also conducted to further investigate the effects of the horizontal stiffeners (used to tie two webs of a U section) on web local buckling and flexural strength. First, it is shown that the nominal plastic moment under negative bending can be developed without using the horizontal stiffeners, although the presence of the stiffeners can delay the occurrence of web local buckling and restrain its propagation. Considering all these, it is concluded that the 1900mm-deep concrete-filled U-shaped composite beam investigated can be conservatively applied to C-OMFs. Finally, some useful recommendations for the arrangement and design of the horizontal stiffeners are also recommended based on the numerical results.

Flexural Test of H-Shape Members Fabricated of High-Strength Steel with Considering Local Buckling (국부좌굴을 고려한 고강도 조립 H형강 부재의 휨성능 실험)

  • Lee, Cheol-Ho;Han, Kyu-Hong;Park, Chang-Hee;Kim, Jin-Ho;Lee, Seung-Eun;Ha, Tae-Hyu
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.4
    • /
    • pp.417-428
    • /
    • 2011
  • Depending on the plastic deformation capacity required, structural steel design under the current codes can be classified into three categories: elastic, plastic, and seismic design. Most of the current steel codes explicitly forbid the use of a steel material with a yield strength higher than 450 MPa in the plastic design because of the concerns about its low plastic deformation capacity as well as the lack of test data on local and lateral torsional buckling behavior. In this study, flexural tests on full-scale H-shape members built with SM490A (ordinary steel or benchmark material) and HSB800 (high-strength steel) were carried out. The primary objective was to investigate the appropriateness of extrapolating the local buckling criterion of the current codes, which was originally developed for normal-strength steel, to the case of high-strength steel. All the SM490A specimens performed consistently with the current code criteria and exhibited sufficient strength and ductility. The performance of the HSB800 specimens was also very satisfactory from the strength perspective; even the specimens with a noncompact and slender flange developed the plastic moment capacity. The HSB800 specimens, however, showed an inferior plastic rotation capacity due to the premature tensile fracture of the beam bottom flange beneath the vertical stiffener at the loading point. The plastic rotation capacity that was achieved was less than 3 (or the minimum level required for a plastic design). Although the test results in this study indicate that the extrapolation of the current flange local-buckling criterion to the case of high-strength steel is conservative from the elastic design perspective, further testing together with an associated analytical study is required to identify the causes of the tensile fracture and to establish a flange slenderness criterion that is more appropriate for high-strength steel.

An Experimental study on Failure Mode of Space Frame's Ball joint connection (스페이스프레임의 볼조인트 접합부 파괴모드에 관한 실험적 연구)

  • Lee, Sung-Min;Kim, Min-Sook;Kim, Dae-Young;Song, Chang-Young;Kang, Chang-Hoon
    • Journal of Korean Association for Spatial Structures
    • /
    • v.7 no.6
    • /
    • pp.61-68
    • /
    • 2007
  • The hole for the insertion of the pin in the shank is exist at ball joint connection of the space frame. It brings about the brittle fracture caused by stress concentration. Consequently it cannot expect the deformation performance or energy absorption performance from ball joint connection. In this study we developed a new connection details which will increase the plastic deformation performance at ball joint connection and can absorb the error in construction, which expect the plastic deformation performance at the reduced shank without brittle fracture at the screw of bolt and pin. Also it's capacity is verified by the performance in numerical analysis and test. We confirmed bolt's plastic deformantion performance through controled shank and pin's area.

  • PDF

Seismic Performance Evaluation of Inverted V Braced Steel Frames with Considering P-Δ Effects: A Case Study (P-Δ 효과를 고려한 역 V형 철골 가새골조의 내진성능평가: 사례연구)

  • Lee, Cheol-Ho;Kim, Jeong-Jae
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.3
    • /
    • pp.97-103
    • /
    • 2004
  • Most of the columns in centrally braced steel frame buildings are usually designed as the gravity columns to reduce connection cost. For a rational seismic performance evaluation of centrally braced steel frame buildings, it is important to properly incorporate in the analysis  the P-${\Delta}$ effects arising from the gravity columns. An effective scheme for the P-${\Delta}$ effects modeling due to the gravity columns was illustrated based on the concept of fictitious leaning column. Seismic performance evaluation of inverted V braced steel frames with or without P-${\Delta}$ effects modeling was conducted by following the FEMA 273 NSP (Nonlinear Static Procedure). The problem in estimating dynamic P-${\Delta}$ modification factor (C3) in FEMA 273 was discussed. The results of this study indicated that the P-${\Delta}$ effects should be included in the seismic performance evaluation of centrally braced steel frames. This study also showed that the inverted V braced frames, retrofitted by applying the tie bars to redistribute the inelastic demand over the height of the building, exhibit significantly improved seismic performance.

Introduction of Efficient FE-analysis Method Using Virtual Equivalent Projected Model (VEPM) for Metallic Sandwich Plates with Pyramidal Truss Cores (가상등가투영형상을 이용하여 피라미드형 트러스 코어를 구비한 금속샌드위치 판재의 효율적 해석기법 제안)

  • Seong, D.Y.;Jung, C.G.;Shim, D.S.;Yang, D.Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.262-265
    • /
    • 2007
  • Metallic sandwich plates constructed of two face sheets and low relative density cores have lightweight characteristics and various static and dynamic load bearing functions. To predict the formability and performance of these structured materials, a computationally efficient FE-analysis method incorporating virtual equivalent projected model has been newly introduced for analysis of metallic sandwich plates. Two dimensional models using the projected shapes of 3D structures have the same equivalent elastic-plastic properties with original geometries including anisotropic stiffness, yield strength and linear hardening function. The projected shapes and virtual properties of the virtual equivalent projected model have been estimated analytically with the same equivalent properties and face buckling strength of 3D pyramidal truss core.

  • PDF

Seismic Response of Self-Centering Energy Dissipative Braced Frames (셀프센터링 가새골조의 지진응답)

  • Choi, Hyun-Hoon;Christopoulos, C.;Kim, Jin-Koo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.331-336
    • /
    • 2008
  • An self-centering energy-dissipative (SCED) bracing system has recently been developed as a new seismic force resistant bracing system. The advantage of the SCED brace system is that, unlike other comparable advanced bracing systems that dissipate energy, such as the buckling restrained brace system, it has a self-centering capability that reduces or eliminates residual building deformations after major seismic events. In this study seismic performance of SCED braced frames is evaluated for a set of 20 design level earthquake records. According to analysis results the SCED systems showed more uniform interstory drift demand for buildings with 8 story or fewer. The residual deformation in SCED buildings turned out to be much less than that of moment-resisting frames.

  • PDF

Design of Microstrip Antenna with Composite Laminates and its structural rigidity (복합재료 평면 안테나 구조의 제작 및 기계적 특성 평가)

  • 전지훈;유치상;김차겸;황운봉;박현철;박위상
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.05a
    • /
    • pp.195-198
    • /
    • 2002
  • Two types of conformal load-bearing antenna structure (CLAS) were designed with microwave composite laminates and Nomex honeycomb cores, to give both structural rigidity and good electrical performance. One is 4$\times$8 array for Synthetic Aperture Radar(SAR) system and the other is $5\times2$ array for wireless LAN system. Design was based on wide bandwidth, high polarization purity, low loss and good structural rigidity. We studied the design, fabrication and structural/electrical performances of the antenna structures. The flexural behavior was observed under a 3-point bending test, an impact test, and a buckling test. Electrical measurements were in good agreement with simulation results and these complex antenna structures have good flexural characteristics. The design of this antenna structure is extended to give a useful guide for sandwich panel manufacturers as well as antenna designers.

  • PDF

Nonlinear vibration characteristics of a vertical passive zero stiffness isolator (수직방향 수동 영강성 제진기의 비선형 진동 특성)

  • Kim, Kyoung-Hong;Ahn, Hyeong-Joon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1259-1265
    • /
    • 2007
  • This paper presents nonlinear vibration characteristics of a vertical passive zero stiffness isolator. The passive isolator can achieve zero stiffness through buckling of notched flexure caused by a compressive force. First, a simulation model of the isolator was built based on elastic beam theory. As increasing the compression force, time and frequency responses of the isolator were simulated. In addition, further nonlinear vibration characteristics were investigated through a bifurcation diagram and a Poincare's map, which shows that even chaostic vibration could happen. The simulations show that as the compressive force increases, the stiffness goes close to zero and the nonlinear characteristic becomes stronger to have a great effect on the isolation performance.

  • PDF

Behaviour of volcanic pumice based thin walled composite filled columns under eccentric loading

  • Anwar Hossain, Khandaker M.
    • Structural Engineering and Mechanics
    • /
    • v.16 no.1
    • /
    • pp.63-81
    • /
    • 2003
  • This paper describes experimental and theoretical investigations on the behaviour of thin walled composite (TWC) filled columns under eccentric loading conditions. Details of the experimental investigation including description of the test columns, testing arrangements, failure modes, strain characteristics, load-deformation responses and effects of various geometric and material parameters are presented. The current paper also introduces the use and effect of lightweight Volcanic Pumice Concrete (VPC) in TWC columns. Analytical models for the design of columns under eccentric loading conditions have been developed taking into consideration the effect of confined concrete. The performance of design equations is validated through experimental results. The proposed design models are found to produce better results compared with available design procedures and Code based formulations. A computer program is developed to generate the interaction diagrams based on the proposed design equations that can be used for design purposes.